EuCARD² WP11 Topical Meeting University of Malta, Valletta, Malta 28th April 2016 # HiRadMat Tests on HL-LHC Collimators and Collimator Materials **F. Carra**^{1,2}, A. Bertarelli¹, E. Berthome¹, L. Gentini¹, P. Gradassi¹, J. Guardia¹, M. Guinchard¹, L. Mettler¹, S. Redaelli¹, A. Rossi¹, O. Sacristan¹ ¹CERN – European Organization for Nuclear Research ²Politecnico di Torino ### Outlook - Context - HL-LHC Collimator Design - HRMT-23 "Jaws" Experiment - Experiment description - First results - Preliminary experimental/numerical benchmarking - HRMT-14 Experiment: post-irradiation analyses - Summary and next steps ### Context - LHC collimation system: robust, reliable, efficient! - However: HL-LHC beam stability can be guaranteed only decreasing the RF impedance of the system - New collimator design studied in 2014/15, featuring high-electrical conductivity jaw materials - Novel composites developed in the frame of Eucard², WP11, with RHP (Copper-Diamond CuCD) and BrevettiBizz (Molybdenum-Graphite MoGr) - The new collimator should maintain or improve the performances in terms of robustness, geometrical stability, radiation hardness, UHV compatibility Molybdenum Carbide – Graphite (MoGr), codeveloped by CERN and Brevetti Bizz (IT): high thermo-mechanical properties and low electrical resistivity (factor 5 to 10 better than carbon). Copper-Diamond (CuCD), produced by RHP-Technology (AT): composite keeping most of Cu thermo-electrical properties, while reducing density and improving structural behavior. Same flange-to-flange length BPM vertical buttons upstream, on top of the horizontal BPMs for jaw positioning - 1m active jaw made of 8 composite blocs - Clamped solution to host any block material (avoids stress concentrations and allows sliding between components with different CTE) - One-side brazed cooling circuit (CuNi90-10) - Screwed stiffener to increase the geometrical stability of the jaw - Housing, stiffeners and clamps in Glidcop Al-15 LOX - Outgassing holes for trapped volumes #### MoGr blocs In case of **copper-diamond**, for manufacturing reasons the bloc length is 100 mm (10 blocs) #### **Assembling procedure** - Longitudinal RF fingers (C17410 CuBe) instead without ferrite - Extremity fingers (C17410 CuBe) re-designed and under cycling - Electrical conductance between blocs and tapering assured by a pressure imposed by screws during the assembling 9 - Jaw 100 mm longer than TCSP, allowing a reduction of the tapering angle to further decrease the collimator impedance - The tapering will also be made of a novel composite, to increase its robustness to particle beam impact (more on this later) **TCSPM** section # HRMT-23 "Jaws" Experiment - 3 separate complete jaws extensively instrumented. - Stainless steel vacuum vessel (p > 10⁻³ mbar). Quick dismounting system to access and manipulate jaws in a glove box. - Be/CFC vacuum windows: designed to withstand higher energy density and intensity - Horizontal actuation inspired by collimator movable tables; Stroke (H): 35 mm - Vertical movement of the whole tank; stroke (V) +/-140 mm. 3 separate windows sets for each jaw - Control system derived from previous HRMT tests (2012) - Standard HiRadMat support table: - Total envelope: 1.2(H) x 0.4(W)x 2.1(L) m³ - Total mass ~ 1600 kg # HRMT-23 "Jaws" Experiment HL-LHC Secondary Collimator Jaw (TCSPM) with 8 MoGr inserts and taperings HL-LHC Secondary Collimator Jaw (TCSPM) with 10 CuCD inserts (MoGr taperings) LHC Secondary Collimator Jaw (TCSP): to verify the resistance of Phase I CFC jaw to beam injection accident with HL-LHC parameters # HRMT-23 "Jaws" Experiment | Experiment Instrumentation | Sampling frequency | |---|--------------------| | 126 electrical strain gauges | 4 MHz | | 42 temperature probes | 200 Hz | | Laser Doppler Vibrometer | 4 MHz | | Water pressure sensor | 100 kHz | | 60 strain Optical Fibre Bragg Gratings | 500 Hz | | Inspection HD Camera (4K) | - | | High Speed Camera + LED lighting system | 20 000 fps | | In-jaw US probes (Omniscan) | - | ### HRMT-23 Beam Parameters Test Runs: 24-31 July 2015 Beam energy: 440 GeV Bunch spacing: 25 ns Protons/bunch: up to 1.32e11 1 to 288 bunches per pulse Beam size (σ): **0.35** to **1 mm** Different impact positions Total Pulses: 100 (excluding alignment) Total Bunches: 8110 (excluding alignment) ■ Total Protons: ~ 1e15 | Jaw | |
Bunches | Total
Intensity | Nominal
σx
[mm] | Nominal
σy
[mm] | Nominal
Target X
[mm] | |------|----|--------------|--------------------|-----------------------|-----------------------|-----------------------------| | CuCD | 1 | 6 | 7.47E+11 | 0.61 | 0.61 | 3.05 | | CuCD | 2 | 12 | 1.51E+12 | 0.61 | 0.61 | 3.05 | | CuCD | 3 | 18 | 2.56E+12 | 0.61 | 0.61 | 3.05 | | CuCD | 4 | 24 | 3.13E+12 | 0.61 | 0.61 | 3.05 | | CuCD | 5 | 24 | 2.95E+12 | 0.35 | 0.35 | 0.18 | | CuCD | 6 | 24 | 2.86E+12 | 0.35 | 0.35 | 0.7 | | CuCD | 7 | 24 | 2.88E+12 | 0.35 | 0.35 | 1.75 | | CuCD | 8 | 48 | 6.06E+12 | 0.35 | 0.35 | 0.18 | | CuCD | 9 | 24 | 2.93E+12 | 0.61 | 0.61 | 0.18 | | CuCD | 10 | 48 | 6.07E+12 | 0.61 | 0.61 | 0.18 | | CuCD | 11 | 72 | 8.82E+12 | 0.61 | 0.61 | 0.18 | | CuCD | 12 | 72 | 8.65E+12 | 0.61 | 0.61 | 0.61 | | CuCD | 13 | 72 | 8.89E+12 | 0.61 | 0.61 | 1.22 | | CuCD | 14 | 72 | 8.71E+12 | 0.61 | 0.61 | 3.05 | | CuCD | 15 | 144 | 1.73E+13 | 0.61 | 0.61 | 3.05 | | | | | Nominal N | | Nominal | |------|----|-----------|-----------|------|----------| | Jaw | | # Bunches | Total | σх | Target X | | | | | Intensity | [mm] | [mm] | | TCSP | 1 | 12 | 7.12E+11 | 0.35 | 3.05 | | TCSP | 2 | 12 | 7.12E+11 | 0.35 | 1.83 | | TCSP | 3 | 12 | 7.13E+11 | 0.35 | 0.61 | | TCSP | 4 | 12 | 7.12E+11 | 0.61 | 3.05 | | TCSP | 5 | 12 | 1.47E+12 | 0.61 | 1.83 | | TCSP | 6 | 12 | 1.48E+12 | 0.61 | 0.61 | | TCSP | 7 | 12 | 1.39E+12 | 1.00 | 3.05 | | TCSP | 8 | 12 | 1.49E+12 | 1.00 | 1.83 | | TCSP | 9 | 12 | 1.47E+12 | 1.00 | 0.61 | | TCSP | 10 | 6 | 7.47E+11 | 0.61 | 3.05 | | TCSP | 11 | 18 | 2.26E+12 | 0.61 | 3.05 | | TCSP | 12 | 24 | 3.07E+12 | 0.61 | 3.05 | | TCSP | 13 | 24 | 2.89E+12 | 0.60 | 3.05 | | TCSP | 14 | 24 | 2.89E+12 | 0.60 | 1.83 | | TCSP | 15 | 24 | 2.93E+12 | 0.60 | 0.61 | | TCSP | 16 | 24 | 2.96E+12 | 0.60 | 0 | | TCSP | 17 | 48 | 5.88E+12 | 0.35 | 0.18 | | TCSP | 18 | 48 | 6.07E+12 | 0.35 | 1.05 | | TCSP | 19 | 48 | 5.84E+12 | 0.35 | 1.75 | | TCSP | 20 | 72 | 7.49E+12 | 0.35 | 0.18 | | TCSP | 21 | 72 | 7.36E+12 | 0.35 | 1.75 | | TCSP | 22 | 144 | 1.48E+13 | 0.35 | 1.75 | | TCSP | 23 | 144 | 1.49E+13 | 0.35 | 1.05 | | TCSP | 24 | 144 | 1.49E+13 | 0.35 | 0.18 | | TCSP | 25 | 144 | 1.86E+13 | 0.35 | 1.75 | | TCSP | 26 | 144 | 1.88E+13 | 0.35 | 1.05 | | TCSP | 27 | 144 | 1.84E+13 | 0.35 | 0.18 | | TCSP | 28 | 288 | 3.66E+13 | 0.61 | 3.05 | | TCSP | 29 | 288 | 3.78E+13 | 0.61 | 1.83 | | TCSP | 30 | 288 | 3.73E+13 | 0.61 | 0.3 | | TCSP | 31 | 288 | 3.73E+13 | 0.61 | 5 | | TCSP | 32 | 288 | 3.69E+13 | 0.35 | 1.75 | | TCSP | 33 | 288 | 3.77E+13 | 0.35 | 1.05 | | TCSP | 34 | 288 | 3.69E+13 | 0.35 | 0.18 | | TCSP | 35 | 288 | 3.79E+13 | 0.35 | 5 | | | | | Total | Nominal | Nominal | |------|----|-----------|-----------|---------|----------| | Jaw | | # Bunches | Intensity | σχ | Target X | | | | | intensity | [mm] | [mm] | | MoGr | 1 | 12 | 7.13E+11 | 0.35 | 3.05 | | MoGr | 2 | 12 | 7.12E+11 | 0.35 | 1.83 | | MoGr | 3 | 12 | 7.12E+11 | 0.35 | 0.61 | | MoGr | 4 | 12 | 7.12E+11 | 0.61 | 3.05 | | MoGr | 5 | 12 | 7.12E+11 | 0.61 | 1.83 | | MoGr | 6 | 12 | 7.12E+11 | 0.61 | 0.61 | | MoGr | 7 | 12 | 1.51E+12 | 1.00 | 3.05 | | MoGr | 8 | 12 | 1.46E+12 | 1.00 | 1.83 | | MoGr | 9 | 12 | 1.51E+12 | 1.00 | 0.61 | | MoGr | 10 | 6 | 7.47E+11 | 0.61 | 3.05 | | MoGr | 11 | 18 | 2.25E+12 | 0.61 | 3.05 | | MoGr | 12 | 24 | 3.07E+12 | 0.61 | 3.05 | | MoGr | 13 | 24 | 2.95E+12 | 0.60 | 3.05 | | MoGr | 14 | 24 | 2.88E+12 | 0.60 | 1.83 | | MoGr | 15 | 24 | 2.88E+12 | 0.60 | 0.61 | | MoGr | 16 | 24 | 2.88E+12 | 0.60 | 0 | | MoGr | 17 | 24 | 2.86E+12 | 0.60 | 0 | | MoGR | 18 | 24 | 2.88E+12 | 0.35 | 0.18 | | MoGR | 19 | 48 | 5.93E+12 | 0.35 | 0.18 | | MoGr | 20 | 72 | 7.47E+12 | 0.60 | 3.05 | | MoGr | 21 | 72 | 7.39E+12 | 0.60 | 1.83 | | MoGr | 22 | 72 | 7.39E+12 | 0.60 | 0.3 | | MoGr | 23 | 144 | 1.45E+13 | 0.60 | 3.05 | | MoGr | 24 | 144 | 1.48E+13 | 0.60 | 1.83 | | MoGr | 25 | 144 | 1.44E+13 | 0.60 | 0.3 | | MoGr | 26 | 144 | 1.87E+13 | 0.61 | 3.05 | | MoGr | 27 | 144 | 1.79E+13 | 0.61 | 1.83 | | MoGr | 28 | 144 | 1.80E+13 | 0.61 | 0.3 | | MoGr | 29 | 288 | 3.80E+13 | 0.61 | 3.05 | | MoGr | 30 | 288 | 3.67E+13 | 0.61 | 1.83 | | MoGr | 31 | 288 | 3.78E+13 | 0.61 | 0.3 | | MoGr | 32 | 288 | 3.76E+13 | 0.35 | 1.75 | | MoGr | 33 | 288 | 3.79E+13 | 0.35 | 1.05 | | MoGr | 34 | 288 | 3.70E+13 | 0.35 | 0.18 | ### HRMT-23 first results CuCD - CuCD on HL-LHC jaw survived (with a limited surface scratch on the Cu coating) the impact of 24 b, σ 0.35 mm at 440 GeV, roughly equivalent to 1 LHC bunch at 7 TeV - At 48 b (~2 LHC 7 TeV bunches) the scratch is more severe, but the jaw appears globally undeformed - This would qualify CuCD as an superior material for TCT jaws (presently in Tungsten alloy). Local damage induced by Asynchronous Beam Dump could be compensated by jaw shift with 5th axis CuCD jaw after 24 b, σ 0.35 mm. Note thin, long groove Groove caused on TCT by an SPS 24 b pulse (HRMT-09, 2012) ### HRMT-23 first results CuCD - CuCD 48 bunches, σ 0.35 mm, impact 0.5σ - CuCD 144 bunches σ 0.61 mm, impact 5 σ #### **TCSPM CuCD 48 bunches** #### **TCSPM CuCD 144 bunches** ### HRMT-23 first results CuCD Post-irradiation visual inspection #### HRMT-23 first results MoGr & CFC - MoGr on HL-LHC jaw survived the impact of several 288 b pulses with σ down to 0.35 mm (peak energy density slightly higher than HL-LHC injection error) - CFC on LHC jaw survived the same impacts - Preliminary results would qualify MoGr (from robustness point of view) as an alternative to CFC with a factor 5 to 10 gain in electrical conductivity #### HRMT-23 first results MoGr & CFC - Post-experiment observations also allowed to observe some marks on the CFC and MoGr surfaces - The visibility of the marks changes with the light orientation - Probably generated during the 0.5 sigma impacts by detachment of the surface powders (pencil-like surface typical of graphitic materials, no etching done before the experiment) - No cracks are visible #### HRMT-23 first results MoGr & CFC - Hole in the TCSP Glidcop tapering observed, two TCSPM jaw taperings, in MoGr, visually unscathed → MoGr is a more robust option as a tapering material also for TCSP - The **electrical functionality of the BPM** embarked in the three jaws will be verified during the post-irradiation experiments, once opening the tank ### Numerical benchmarking – Thermal ■ THERMAL: CuCD 6 bunches, σ 0.61 mm, impact 5σ ### Numerical benchmarking – Thermal - Cool-down simulated is much slower, typical of forced convection (nominal film coefficient of LHC collimators with circulating water!) - Shock-enhanced water forced convection? ### Numerical benchmarking - Structural, CuCD - Structural: **CuCD 24 bunches**, σ 0.61 mm, impact 5σ - Reasonably low noise levels - Electromagnetic coupling beam/strain gauges for the first microseconds after the impact ### Numerical benchmarking - Structural, CuCD - Structural: CuCD 24 bunches, σ 0.61 mm, impact 5σ - Pseudo-plasticity of the material taken into account! Ongoing: wave damping, phase, increased simulation duration (to catch lower frequencies) ### Numerical benchmarking - Structural, MoGr Structural: MoGr 24 bunches, σ 0.6 mm, impact 5σ Elastic models for MoGr so far: important to include plasticity! Difficult, because anisotropic material 28 April 2016 Federico Carra #### HRMT-14: Material Sample Holder #### 2012: test of specimens from 6 different materials, including novel composites - Allowed characterization of materials of interest for collimators - Tuning of numerical models, with very good benchmarking between measurements and simulations #### Medium Intensity Samples (Type 1) - Strain measurements on sample outer surface; - Radial velocity measurements (LDV); - Temperature measurements; - Sound measurements. #### High Intensity Samples (Type 2) - Strain measurements on sample outer surface; - Fast speed camera to capture fragment front formation and propagation; - Temperature measurements; - Sound measurements. | Case | Bunches | p/bunch | Total
Intensity | Beam
Sigma | Specimen
Slot | Velocity | |------------|---------|---------|--------------------|---------------|------------------|----------| | Simulation | 60 | 1.5e11 | 9.0e12 p | 2.5 mm | 9 | 316 m/s | | Experiment | 72 | 1.26e11 | 9.0e12 p | 1.9 mm | 8 (partly 9) | ~275 m/s | Federico Carra 30 #### HRMT-14: Material Sample Holder 31 #### 2012: test of specimens from 6 different materials, including novel composites Allowed characterization of materials of interest for collimators Tuning of numerical models, with very good benchmarking between measurements Federico Carra #### HRMT-14: Post Irradiation Tests - Tank opened in May 2015 in b. 109 (CERN), after 2 ½ years of cool-down - Activation was low, but risk of contamination due to radioactive fragments and powders (mostly Cu and W) - Non-destructive and destructive tests planned | | Order | TEST | | | | |-------------------------|-------------|------------------------|-------|--|--| | | | | | | | | | 1 | Visual Observation | | | | | | 2 | Radiography | | | | | D N | 3 | Optical microscopy | | | | | NON-DESTRUCTIVE TESTING | 4 | SEM microscopy | | | | | UCTIVE | 5 | XRD | | | | | DESTR | 6 | Sigmatest | | | | | NON- | 7 | Microhardness | | | | | | 8 | Degassing test | | | | | | 9 Metrology | | | | | | | 10 | Weight/Density meassur | ement | | | **Destructive**: inner section observations, machining of specimens for thermo-mechanical characterization, electrical conductivity measurements, etc. #### HRMT-14: Post Irradiation Tests Tank opened in May 2015 in b. 109 (CERN), after 2 ½ years of cool-down Activation was low, but risk of contamination due to radioactive fragments and powders (mostly Cu and W) Non-destructive and destructive tests planned #### HRMT-14: Post Irradiation Tests - Radiography campaign did not reveal any major damage on top of what visible - Optical microscopy highlighted shrinkage of copper-based materials # Summary - New materials developed in EuCARD², WP11: MoGr and CuCD - Proposed as solutions for HL-LHC collimators (low-impedance primary and secondary, high-robustness tertiary) - HiRadMat test (HRMT-23) in August 2015 to demonstrate the validity of the two HL-LHC collimators, and to test a TCSP at the energy density of HL-LHC injection error - CFC and MoGr survived all impacts up to 288 b, σ 0.35 mm, grazing and deep impacts, slightly in excess of peak energy density of HL-LHC and LIU BCMS Beam Injection Error - CuCD survived (with surface scratch) by 24 b, σ 0.35 mm roughly equivalent to 1 full LHC bunch (asynchronous beam dump failure) - TCSP Glidcop tapering locally melted, MoGr taperings of TCSPM jaws survived unscathed the beam impacts → MoGr taperings to be considered also for all the other future collimators - After HRMT-23, green light for the construction of a prototype of secondary HL-LHC collimator (TCSPM) to be tested in the LHC in 2017 → production well ongoing # Next steps - Numerical/experimental benchmarking: - The plastic model proposed for CuCD seems to work well, still few points to be addressed (material damping, signal phase, full-scale model) - Plastic model to be extended also to CFC and MoGr (so far, anisotropic elasticity considered) → wrt CuCD, further difficulty is due to the material orthotropy - More sophisticated signal analysis ongoing (e.g. wavelet analysis) - HRMT-23 Post-irradiation campaign: - Tank opening to be coordinated with RP, once activated dose will be low enough. - With respect to past HiRadMat tests (HRMT-09 and HRMT-14) lower level of contamination - Non-destructive and destructive tests once opened - HRMT-14 Post-irradiation campaign: - Non-destructive campaign almost finished, then global review of the results - Destructive characterization, with sample cutting for verifying the material properties after the impact, to start soon Thank you.