

EuCARD² WP11 Topical Meeting University of Malta, Valletta, Malta 28th April 2016

HiRadMat Tests on HL-LHC Collimators and Collimator Materials

F. Carra^{1,2}, A. Bertarelli¹, E. Berthome¹, L. Gentini¹, P. Gradassi¹, J. Guardia¹, M. Guinchard¹, L. Mettler¹, S. Redaelli¹, A. Rossi¹, O. Sacristan¹

¹CERN – European Organization for Nuclear Research ²Politecnico di Torino

Outlook

- Context
- HL-LHC Collimator Design
- HRMT-23 "Jaws" Experiment
 - Experiment description
 - First results
 - Preliminary experimental/numerical benchmarking
- HRMT-14 Experiment: post-irradiation analyses
- Summary and next steps

Context

- LHC collimation system: robust, reliable, efficient!
- However: HL-LHC beam stability can be guaranteed only decreasing the RF impedance of the system
- New collimator design studied in 2014/15, featuring high-electrical conductivity jaw materials
- Novel composites developed in the frame of Eucard²,
 WP11, with RHP (Copper-Diamond CuCD) and
 BrevettiBizz (Molybdenum-Graphite MoGr)
- The new collimator should maintain or improve the performances in terms of robustness, geometrical stability, radiation hardness, UHV compatibility

Molybdenum Carbide – Graphite (MoGr), codeveloped by CERN and Brevetti Bizz (IT): high thermo-mechanical properties and low electrical resistivity (factor 5 to 10 better than carbon).

Copper-Diamond
(CuCD), produced by
RHP-Technology (AT):
composite keeping most
of Cu thermo-electrical
properties, while reducing
density and improving
structural behavior.

Same flange-to-flange length

 BPM vertical buttons upstream, on top of the horizontal BPMs for jaw positioning

- 1m active jaw made of 8 composite blocs
- Clamped solution to host any block material (avoids stress concentrations and allows sliding between components with different CTE)
- One-side brazed cooling circuit (CuNi90-10)
- Screwed stiffener to increase the geometrical stability of the jaw
- Housing, stiffeners and clamps in Glidcop Al-15 LOX
- Outgassing holes for trapped volumes

MoGr blocs

In case of **copper-diamond**, for manufacturing reasons the bloc length is 100 mm (10 blocs)

Assembling procedure

- Longitudinal RF fingers (C17410 CuBe) instead without ferrite
- Extremity fingers (C17410 CuBe) re-designed and under cycling
- Electrical conductance between blocs and tapering assured by a pressure imposed by screws during the assembling

9

- Jaw 100 mm longer than TCSP, allowing a reduction of the tapering angle to further decrease the collimator impedance
- The tapering will also be made of a novel composite, to increase its robustness to particle beam impact (more on this later)

TCSPM section

HRMT-23 "Jaws" Experiment

- 3 separate complete jaws extensively instrumented.
- Stainless steel vacuum vessel (p > 10⁻³ mbar).
 Quick dismounting system to access and manipulate jaws in a glove box.
- Be/CFC vacuum windows: designed to withstand higher energy density and intensity
- Horizontal actuation inspired by collimator movable tables; Stroke (H): 35 mm
- Vertical movement of the whole tank; stroke
 (V) +/-140 mm. 3 separate windows sets for each jaw
- Control system derived from previous HRMT tests (2012)
- Standard HiRadMat support table:
 - Total envelope: 1.2(H) x 0.4(W)x 2.1(L) m³
 - Total mass ~ 1600 kg

HRMT-23 "Jaws" Experiment

HL-LHC Secondary Collimator Jaw (TCSPM) with 8 MoGr inserts and taperings

HL-LHC Secondary Collimator Jaw (TCSPM) with 10 CuCD inserts (MoGr taperings)

 LHC Secondary Collimator Jaw (TCSP): to verify the resistance of Phase I CFC jaw to beam injection accident with HL-LHC parameters

HRMT-23 "Jaws" Experiment

Experiment Instrumentation	Sampling frequency
126 electrical strain gauges	4 MHz
42 temperature probes	200 Hz
Laser Doppler Vibrometer	4 MHz
Water pressure sensor	100 kHz
60 strain Optical Fibre Bragg Gratings	500 Hz
Inspection HD Camera (4K)	-
High Speed Camera + LED lighting system	20 000 fps
In-jaw US probes (Omniscan)	-

HRMT-23 Beam Parameters

Test Runs: 24-31 July 2015

Beam energy: 440 GeV

Bunch spacing: 25 ns

Protons/bunch: up to 1.32e11

1 to 288 bunches per pulse

Beam size (σ): **0.35** to **1 mm**

Different impact positions

Total Pulses: 100 (excluding alignment)

Total Bunches: 8110 (excluding alignment)

■ Total Protons: ~ 1e15

Jaw		# Bunches	Total Intensity	Nominal σx [mm]	Nominal σy [mm]	Nominal Target X [mm]
CuCD	1	6	7.47E+11	0.61	0.61	3.05
CuCD	2	12	1.51E+12	0.61	0.61	3.05
CuCD	3	18	2.56E+12	0.61	0.61	3.05
CuCD	4	24	3.13E+12	0.61	0.61	3.05
CuCD	5	24	2.95E+12	0.35	0.35	0.18
CuCD	6	24	2.86E+12	0.35	0.35	0.7
CuCD	7	24	2.88E+12	0.35	0.35	1.75
CuCD	8	48	6.06E+12	0.35	0.35	0.18
CuCD	9	24	2.93E+12	0.61	0.61	0.18
CuCD	10	48	6.07E+12	0.61	0.61	0.18
CuCD	11	72	8.82E+12	0.61	0.61	0.18
CuCD	12	72	8.65E+12	0.61	0.61	0.61
CuCD	13	72	8.89E+12	0.61	0.61	1.22
CuCD	14	72	8.71E+12	0.61	0.61	3.05
CuCD	15	144	1.73E+13	0.61	0.61	3.05

			Nominal N		Nominal
Jaw		# Bunches	Total	σх	Target X
			Intensity	[mm]	[mm]
TCSP	1	12	7.12E+11	0.35	3.05
TCSP	2	12	7.12E+11	0.35	1.83
TCSP	3	12	7.13E+11	0.35	0.61
TCSP	4	12	7.12E+11	0.61	3.05
TCSP	5	12	1.47E+12	0.61	1.83
TCSP	6	12	1.48E+12	0.61	0.61
TCSP	7	12	1.39E+12	1.00	3.05
TCSP	8	12	1.49E+12	1.00	1.83
TCSP	9	12	1.47E+12	1.00	0.61
TCSP	10	6	7.47E+11	0.61	3.05
TCSP	11	18	2.26E+12	0.61	3.05
TCSP	12	24	3.07E+12	0.61	3.05
TCSP	13	24	2.89E+12	0.60	3.05
TCSP	14	24	2.89E+12	0.60	1.83
TCSP	15	24	2.93E+12	0.60	0.61
TCSP	16	24	2.96E+12	0.60	0
TCSP	17	48	5.88E+12	0.35	0.18
TCSP	18	48	6.07E+12	0.35	1.05
TCSP	19	48	5.84E+12	0.35	1.75
TCSP	20	72	7.49E+12	0.35	0.18
TCSP	21	72	7.36E+12	0.35	1.75
TCSP	22	144	1.48E+13	0.35	1.75
TCSP	23	144	1.49E+13	0.35	1.05
TCSP	24	144	1.49E+13	0.35	0.18
TCSP	25	144	1.86E+13	0.35	1.75
TCSP	26	144	1.88E+13	0.35	1.05
TCSP	27	144	1.84E+13	0.35	0.18
TCSP	28	288	3.66E+13	0.61	3.05
TCSP	29	288	3.78E+13	0.61	1.83
TCSP	30	288	3.73E+13	0.61	0.3
TCSP	31	288	3.73E+13	0.61	5
TCSP	32	288	3.69E+13	0.35	1.75
TCSP	33	288	3.77E+13	0.35	1.05
TCSP	34	288	3.69E+13	0.35	0.18
TCSP	35	288	3.79E+13	0.35	5

			Total	Nominal	Nominal
Jaw		# Bunches	Intensity	σχ	Target X
			intensity	[mm]	[mm]
MoGr	1	12	7.13E+11	0.35	3.05
MoGr	2	12	7.12E+11	0.35	1.83
MoGr	3	12	7.12E+11	0.35	0.61
MoGr	4	12	7.12E+11	0.61	3.05
MoGr	5	12	7.12E+11	0.61	1.83
MoGr	6	12	7.12E+11	0.61	0.61
MoGr	7	12	1.51E+12	1.00	3.05
MoGr	8	12	1.46E+12	1.00	1.83
MoGr	9	12	1.51E+12	1.00	0.61
MoGr	10	6	7.47E+11	0.61	3.05
MoGr	11	18	2.25E+12	0.61	3.05
MoGr	12	24	3.07E+12	0.61	3.05
MoGr	13	24	2.95E+12	0.60	3.05
MoGr	14	24	2.88E+12	0.60	1.83
MoGr	15	24	2.88E+12	0.60	0.61
MoGr	16	24	2.88E+12	0.60	0
MoGr	17	24	2.86E+12	0.60	0
MoGR	18	24	2.88E+12	0.35	0.18
MoGR	19	48	5.93E+12	0.35	0.18
MoGr	20	72	7.47E+12	0.60	3.05
MoGr	21	72	7.39E+12	0.60	1.83
MoGr	22	72	7.39E+12	0.60	0.3
MoGr	23	144	1.45E+13	0.60	3.05
MoGr	24	144	1.48E+13	0.60	1.83
MoGr	25	144	1.44E+13	0.60	0.3
MoGr	26	144	1.87E+13	0.61	3.05
MoGr	27	144	1.79E+13	0.61	1.83
MoGr	28	144	1.80E+13	0.61	0.3
MoGr	29	288	3.80E+13	0.61	3.05
MoGr	30	288	3.67E+13	0.61	1.83
MoGr	31	288	3.78E+13	0.61	0.3
MoGr	32	288	3.76E+13	0.35	1.75
MoGr	33	288	3.79E+13	0.35	1.05
MoGr	34	288	3.70E+13	0.35	0.18

HRMT-23 first results CuCD

- CuCD on HL-LHC jaw survived (with a limited surface scratch on the Cu coating) the impact of 24 b, σ 0.35 mm at 440 GeV, roughly equivalent to 1 LHC bunch at 7 TeV
- At 48 b (~2 LHC 7 TeV bunches) the scratch is more severe, but the jaw appears globally undeformed
- This would qualify CuCD as an superior material for TCT jaws (presently in Tungsten alloy). Local damage induced by Asynchronous Beam Dump could be compensated by jaw shift with 5th axis

CuCD jaw after 24 b, σ 0.35 mm. Note thin, long groove

Groove caused on TCT by an SPS 24 b pulse (HRMT-09, 2012)

HRMT-23 first results CuCD

- CuCD 48 bunches, σ 0.35 mm, impact 0.5σ
- CuCD 144 bunches σ 0.61 mm, impact 5 σ

TCSPM CuCD 48 bunches

TCSPM CuCD 144 bunches

HRMT-23 first results CuCD

Post-irradiation visual inspection

HRMT-23 first results MoGr & CFC

- MoGr on HL-LHC jaw survived the impact of several 288 b pulses with σ down to 0.35 mm (peak energy density slightly higher than HL-LHC injection error)
- CFC on LHC jaw survived the same impacts
- Preliminary results would qualify MoGr (from robustness point of view) as an alternative to CFC with a factor 5 to 10 gain in electrical conductivity

HRMT-23 first results MoGr & CFC

- Post-experiment observations also allowed to observe some marks on the CFC and MoGr surfaces
- The visibility of the marks changes with the light orientation
- Probably generated during the 0.5 sigma impacts by detachment of the surface powders (pencil-like surface typical of graphitic materials, no etching done before the experiment)
- No cracks are visible

HRMT-23 first results MoGr & CFC

- Hole in the TCSP Glidcop tapering observed, two TCSPM jaw taperings, in MoGr, visually unscathed → MoGr is a more robust option as a tapering material also for TCSP
- The **electrical functionality of the BPM** embarked in the three jaws will be verified during the post-irradiation experiments, once opening the tank

Numerical benchmarking – Thermal

■ THERMAL: CuCD 6 bunches, σ 0.61 mm, impact 5σ

Numerical benchmarking – Thermal

- Cool-down simulated is much slower, typical of forced convection (nominal film coefficient of LHC collimators with circulating water!)
- Shock-enhanced water forced convection?

Numerical benchmarking - Structural, CuCD

- Structural: **CuCD 24 bunches**, σ 0.61 mm, impact 5σ
- Reasonably low noise levels
- Electromagnetic coupling beam/strain gauges for the first microseconds after the impact

Numerical benchmarking - Structural, CuCD

- Structural: CuCD 24 bunches, σ 0.61 mm, impact 5σ
- Pseudo-plasticity of the material taken into account!

Ongoing: wave damping, phase, increased simulation duration (to catch lower frequencies)

Numerical benchmarking - Structural, MoGr

Structural: MoGr 24 bunches, σ 0.6 mm, impact 5σ

Elastic models for MoGr so far: important to include plasticity! Difficult, because anisotropic material

28 April 2016

Federico Carra

HRMT-14: Material Sample Holder

2012: test of specimens from 6 different materials, including novel composites

- Allowed characterization of materials of interest for collimators
- Tuning of numerical models, with very good benchmarking between measurements and simulations

Medium Intensity Samples (Type 1)

- Strain measurements on sample outer surface;
- Radial velocity measurements (LDV);
- Temperature measurements;
- Sound measurements.

High Intensity Samples (Type 2)

- Strain measurements on sample outer surface;
- Fast speed camera to capture fragment front formation and propagation;
- Temperature measurements;
- Sound measurements.

Case	Bunches	p/bunch	Total Intensity	Beam Sigma	Specimen Slot	Velocity
Simulation	60	1.5e11	9.0e12 p	2.5 mm	9	316 m/s
Experiment	72	1.26e11	9.0e12 p	1.9 mm	8 (partly 9)	~275 m/s

Federico Carra 30

HRMT-14: Material Sample Holder

31

2012: test of specimens from 6 different materials, including novel composites

Allowed characterization of materials of interest for collimators

Tuning of numerical models, with very good benchmarking between measurements

Federico Carra

HRMT-14: Post Irradiation Tests

- Tank opened in May 2015 in b. 109 (CERN), after 2 ½ years of cool-down
- Activation was low, but risk of contamination due to radioactive fragments and powders (mostly Cu and W)
- Non-destructive and destructive tests planned

	Order	TEST			
	1	Visual Observation			
	2	Radiography			
D N	3	Optical microscopy			
NON-DESTRUCTIVE TESTING	4	SEM microscopy			
UCTIVE	5	XRD			
DESTR	6	Sigmatest			
NON-	7	Microhardness			
	8	Degassing test			
	9 Metrology				
	10	Weight/Density meassur	ement		

Destructive: inner section observations, machining of specimens for thermo-mechanical characterization, electrical conductivity measurements, etc.

HRMT-14: Post Irradiation Tests

Tank opened in May 2015 in b. 109 (CERN), after 2 ½ years of cool-down

Activation was low, but risk of contamination due to radioactive fragments and

powders (mostly Cu and W)

Non-destructive and destructive tests planned

HRMT-14: Post Irradiation Tests

- Radiography campaign did not reveal any major damage on top of what visible
- Optical microscopy highlighted shrinkage of copper-based materials

Summary

- New materials developed in EuCARD², WP11: MoGr and CuCD
- Proposed as solutions for HL-LHC collimators (low-impedance primary and secondary, high-robustness tertiary)
- HiRadMat test (HRMT-23) in August 2015 to demonstrate the validity of the two HL-LHC collimators, and to test a TCSP at the energy density of HL-LHC injection error
- CFC and MoGr survived all impacts up to 288 b, σ 0.35 mm, grazing and deep impacts, slightly in excess of peak energy density of HL-LHC and LIU BCMS Beam Injection Error
- CuCD survived (with surface scratch) by 24 b, σ 0.35 mm roughly equivalent to 1 full LHC bunch (asynchronous beam dump failure)
- TCSP Glidcop tapering locally melted, MoGr taperings of TCSPM jaws survived unscathed the beam impacts → MoGr taperings to be considered also for all the other future collimators
- After HRMT-23, green light for the construction of a prototype of secondary HL-LHC collimator (TCSPM) to be tested in the LHC in 2017 → production well ongoing

Next steps

- Numerical/experimental benchmarking:
 - The plastic model proposed for CuCD seems to work well, still few points to be addressed (material damping, signal phase, full-scale model)
 - Plastic model to be extended also to CFC and MoGr (so far, anisotropic elasticity considered) → wrt CuCD, further difficulty is due to the material orthotropy
 - More sophisticated signal analysis ongoing (e.g. wavelet analysis)
- HRMT-23 Post-irradiation campaign:
 - Tank opening to be coordinated with RP, once activated dose will be low enough.
 - With respect to past HiRadMat tests (HRMT-09 and HRMT-14) lower level of contamination
 - Non-destructive and destructive tests once opened
- HRMT-14 Post-irradiation campaign:
 - Non-destructive campaign almost finished, then global review of the results
 - Destructive characterization, with sample cutting for verifying the material properties after the impact, to start soon

Thank you.