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My work on integrating ROOT and Spark has split into:

ScaROOT: Call ROOT functions (and arbitrary C++) from
Scala, and therefore Spark, Hadoop, etc.

root2avro: Bulk data flow from ROOT files to other file formats
or streaming into Spark, Hadoop, etc.

For the last few weeks, root2avro has been my main focus, but I
recently got ScaROOT into usable shape.

root2avro isn’t a special case of ScaROOT for reasons you’ll see in
a moment.
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Documented with unit tests and examples on the GitHub wiki page
(https://github.com/diana-hep/scaroot).
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https://github.com/diana-hep/scaroot


Interface

PyROOT dynamically makes proxies to ROOT functions when
they’re called, so that working in Python is approximately the same
as working in CINT/Cling (replacing “->” and “::” with “.”).

Scala (and Java) are compiled languages, so field names of classes
have to be declared in advance. Classes can be defined on the fly
(in a private ClassLoader), but the main program can only use
them if they adhere to a predefined interface (abstract class).

We therefore ask the user to define a Scala interface that is
satisfied by a C++ class. The C++ class can use any ROOT
functions.
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Example
import org.dianahep.scaroot.RootClass

// Scala trait (abstract class with virtual methods):
trait ChiSqProb {

def apply(chi2: Double, ndof: Int): Double
}

// C++ class definition that satisfies the interface:
val chiSqProbClass = RootClass[ChiSqProb]("""
class ChiSqProb {
public:

double apply(double chi2, int ndof) {
return ROOT::Math::chisquared_cdf(chi2, ndof);

}
};
""")

// Create an instance:
val chiSqProb = chiSqProbClass.newInstance

// And use it:
chiSqProb.apply(53.8, 50) // or just chiSqProb(53.8, 50)

// because ’apply’ is ’operator()’
0.6689797343068249
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How it works

I The use of “RootClass[ChiSqProb]” in the code invokes
a compile-time macro that generates custom hooks for the
“ChiSqProb” trait.

I These hooks connect to ROOT through JNA (same process,
no serialization, just a memory-to-memory copy).

I ROOT’s TInterpreter is invoked to compile the code and
give the JVM a direct pointer to the class.

I At execution time, the method arguments are copied from
Java’s memory heap to C++’s, the function is called, and the
return values are copied back, all within a single process.

Who would use it
I Users doing high-throughput calculations (e.g. skimming) on

Spark: the round-trip time between Spark and ROOT is
minimized.

I Or a library of predefined interfaces provided to the user.
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Capabilities

I The C++ code is not fixed until objects are made at runtime.
This string could be dynamically generated for “just in time”
flexibility and efficiency.

I RootClass objects are serializable (as the C++ string!) so
that they can be passed to a remote Spark workflow.

Limitations

I The class must have a zero-argument constructor.

I Parameter types and return types must be primitives
(numbers, strings, or an opaque com.sun.jna.Pointer
to C++ data).

I (The appropriate version of) ROOT needs to be installed
across the Spark cluster, accessible via LD LIBRARY PATH
like any other natively compiled program.
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Status

I Works, but has no error checking. Any mistake causes
segmentation fault (will fix, of course).

I Has not been tested in Spark yet. (Does anyone have an
application they’re eager to try? Want to work with me?)

Possible extensions
I Could build a library of common functions (histograms and

such) by hand.

I Could exhaustively search the space of ROOT functions by a
graph traversal on TInterpreter. This would be a better
analogy with PyROOT, but statically compiled.

Why is this not a data feed (root2avro)?
I With a primitives-only interface, each complex data structure

(CMSSW, ART, Bacon, . . . ) would have to be adapted by
hand. We want to recognize these structures automatically.
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Status of root2avro

I All known data types that can be found in TTrees are
handled, with a framework that can easily add new ones as
they’re discovered.

I Successfully examined and converted a Bacon-tuple to JSON.

I All JSON-writing functions have been supplanted with
Avro-writing functions, so we should do Bacon-to-Avro soon.

What’s next?
1. Convert Matteo and Christina’s Bacon-tuples to Avro files,

load into a Spark cluster.

2. Fix any bugs and segmentation faults along the way.

3. Copy ROOT data directly into the JVM using a technique
similar to ScaROOT.

4. Wrap this up in a Spark InputRDD and/or DataFrame
(they’re different).
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Example Avro schema generated from a Bacon-tuple
{"type": "record",
"name": "Events",
"fields": [

{"name": "GenParticle", "type": {"type": "array", "items": {"type": "record",
"name": "baconhep::TGenParticle",
"fields": [

{"name": "parent", "type": "int"},
{"name": "pdgId", "type": "int"},
{"name": "status", "type": "int"},
{"name": "pt", "type": "float"},
{"name": "eta", "type": "float"},
{"name": "phi", "type": "float"},
{"name": "mass", "type": "float"},
{"name": "y", "type": "float"}

]
}}},
{"name": "LHEWeight", "type": {"type": "array", "items": {"type": "record",
"name": "baconhep::TLHEWeight",
"fields": [

{"name": "id", "type": "int", "doc": "parton flavor PDG ID"},
{"name": "weight", "type": "float", "doc": "generator-level event weight"}

]
}}},
{"name": "Electron", "type": {"type": "array", "items": {"type": "record",
"name": "baconhep::TElectron",
"fields": [

{"name": "pt", "type": "float", "doc": "kinematics"},
{"name": "eta", "type": "float", "doc": "kinematics"},
{"name": "phi", "type": "float", "doc": "kinematics"},
{"name": "scEt", "type": "float", "doc": "supercluster kinematics"},
{"name": "scEta", "type": "float", "doc": "supercluster kinematics"},
{"name": "scPhi", "type": "float", "doc": "supercluster kinematics"},
{"name": "ecalEnergy", "type": "float", "doc": "ECAL energy"},
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