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My work on integrating ROOT and Spark has split into:
ScaROOT: Call ROOT functions (and arbitrary C++) from
Scala, and therefore Spark, Hadoop, etc.

root2avro: Bulk data flow from ROOT files to other file formats
or streaming into Spark, Hadoop, etc.

For the last few weeks, root2avro has been my main focus, but |
recently got ScaROOQOT into usable shape.

root2avro isn't a special case of ScaROOT for reasons you'll see in
a moment.
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Documented with unit tests and examples on the GitHub wiki page
(https://github.com/diana-hep/scaroot).

ScaROOT

Call ROOT or arbitrary C++ code from Scala.

Motivation

ROOT is a popular framework for high energy physics data. Most "big data" frameworks, such as Hadoop and
Spark, are implemented in Java or Scala. ScaROOT allows you to call ROOT functions from Scala so that ROOT
can be used to perform calculations in a big data workflow

This is for accessing ROOQT library functions. See root2avro for a high-throughput data feed.

ScaROOT serves the same purpose as PyROOT, which provides access to ROOT functions in Python, though
the interface differs because Python is more dynamic than the Java Virtual Machine (JVM).

Examples

ScaROOT works by linking Scala traits (abstract interfaces) to C++ code that may contain ROOT calls.

import org.dianahep.scaroot.RootClass

// Scala trait (abstract interface):
trait ChiSgProb {

def apply(chi2: Double, ndof: Int): Double
}
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https://github.com/diana-hep/scaroot

Interface

PyROOT dynamically makes proxies to ROOT functions when
they're called, so that working in Python is approximately the same
as working in CINT/Cling (replacing “->" and “::" with “.").
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Scala (and Java) are compiled languages, so field names of classes
have to be declared in advance. Classes can be defined on the fly
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Interface

PyROOT dynamically makes proxies to ROOT functions when
they're called, so that working in Python is approximately the same
as working in CINT/Cling (replacing “->" and “::" with “.").

Scala (and Java) are compiled languages, so field names of classes
have to be declared in advance. Classes can be defined on the fly
(in a private ClassLoader), but the main program can only use
them if they adhere to a predefined interface (abstract class).

We therefore ask the user to define a Scala interface that is
satisfied by a C++ class. The C++ class can use any ROOT
functions.
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Example

import org.dianahep.scaroot.RootClass

// Scala trait (abstract class with virtual methods) :
trait ChiSgProb {

def apply(chi2: Double, ndof: Int): Double
}

// C++ class definition that satisfies the interface:
val chiSgProbClass = RootClass[ChiSgProb] ("""
class ChiSgProb {
public:

double apply(double chi2, int ndof) {

return ROOT: :Math::chisquared_cdf (chi2, ndof);

}

bi

mawy

// Create an instance:
val chiSgProb = chiSgProbClass.newlInstance

// And use it:
chiSgProb.apply (53.8, 50) // or Jjust chiSgProb(53.8, 50)

// because ’apply’ is ’operator()’
0.6689797343068249
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How it works

» The use of “RootClass[ChiSgProb]"” in the code invokes
a compile-time macro that generates custom hooks for the
“ChiSgProb” trait.

» These hooks connect to ROOT through JNA (same process,
no serialization, just a memory-to-memory copy).

» ROOT's TInterpreter is invoked to compile the code and
give the JVM a direct pointer to the class.

» At execution time, the method arguments are copied from
Java's memory heap to C++'s, the function is called, and the
return values are copied back, all within a single process.

Who would use it

» Users doing high-throughput calculations (e.g. skimming) on
Spark: the round-trip time between Spark and ROOT is
minimized.

» Or a library of predefined interfaces provided to the user.
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Capabilities

» The C4++ code is not fixed until objects are made at runtime.

This string could be dynamically generated for “just in time”
flexibility and efficiency.

» RootClass objects are serializable (as the C++ string!) so
that they can be passed to a remote Spark workflow.

Limitations

» The class must have a zero-argument constructor.

» Parameter types and return types must be primitives
(numbers, strings, or an opaque com.sun. jna.Pointer
to C++ data).

» (The appropriate version of) ROOT needs to be installed
across the Spark cluster, accessible via LD_LIBRARY_PATH
like any other natively compiled program.
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Status

» Works, but has no error checking. Any mistake causes
segmentation fault (will fix, of course).

» Has not been tested in Spark yet. (Does anyone have an
application they're eager to try? Want to work with me?)

Possible extensions

» Could build a library of common functions (histograms and
such) by hand.

» Could exhaustively search the space of ROOT functions by a
graph traversal on TInterpreter. This would be a better
analogy with PyROOT, but statically compiled.

Why is this not a data feed (root2avro)?

» With a primitives-only interface, each complex data structure
(CMSSW, ART, Bacon, ...) would have to be adapted by
hand. We want to recognize these structures automatically.
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Status of root2avro

» All known data types that can be found in TTrees are
handled, with a framework that can easily add new ones as
they're discovered.

» Successfully examined and converted a Bacon-tuple to JSON.

> All JSON-writing functions have been supplanted with
Avro-writing functions, so we should do Bacon-to-Avro soon.

What's next?

1. Convert Matteo and Christina’s Bacon-tuples to Avro files,
load into a Spark cluster.

2. Fix any bugs and segmentation faults along the way.

3. Copy ROOT data directly into the JVM using a technique
similar to ScaROOT.

4. Wrap this up in a Spark InputRDD and/or DataFrame
(they're different).
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Example Avro schema generated from a Bacon-tuple

{"type": "record",
"name": "Events",
"fields": [

{"name": "GenParticle", "type": {"type": "array", "items": {"type": "record",
"name": "baconhep::TGenParticle",
"fields": [

{"name": "parent", "type": "int"},
{"name": "pdgId", "type": "int"},
{"name": "status", "type": "int"},
{"name": "pt", "type": "float"},
{"name": "eta", "type": "float"},
{"name": "phi", "type": "float"},
{"name": "mass", "type": "float"},
("name": "y", "type": "float"}

]
Fh,
{"name": "LHEWeight", "type": {"type": "array", "items": {"type": "record",
"name": "baconhep::TLHEWeight",
"fields [
{"name": "id", "type": "int", "doc": "parton flavor PDG ID"},
{"name": "weight", "type": "float", "doc": "generator-level event weight"}
]
i,

{"name": "Electron", "type": {"type": "array", "items": {"type": "record",
"name": "baconhep::TElectron",
"fields": [
{"name": "pt", "type": "float", "doc": "kinematics"},
{"name": "eta", "type": "float", "doc": "kinematics"},
{"name": "phi", "type": "float", "doc": "kinematics"},
{"name": "scEt", "type": "float", "doc": "supercluster kinematics"},
{"name": "scEta", "type": "float", "doc": "supercluster kinematics"},
{"name": "scPhi", "type": "float", "doc": "supercluster kinematics"},
{"name": "ecalEnergy", "type": "float", "doc": "ECAL energy"},
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