Development of Particle Detectors at TIFR for Underground Experiments-Then and Now

Naba K Mondal, INO Cell, TIFR

Prelude

Cosmic Ray Research Unit at Bangalore

- Seeds for Experimental High Energy Physics research at TIFR were really sown even before TIFR came into existence on 1st June, 1945.
- In December, 1944 Homi Bhabha flew two telesopes with GM counters sandwitched with lead plates using US airplanes stationed at Bangalore during the war.
 - First measurement of high altitude meson intensities at equatorial latitude.
- Built a 12" circular cloud chamber similar to one available at Blackett's Lab in UK.
 - Used it to study the scattering characteristics of mesons

Early Particle physics experiments at TIFR

- Cloud Chambers.
- G.M. Counters.
- Emulsions.

Conference on Elementary Particles at TIFR in 1950

1951 Start of KGF activities

First set of measurements were carried out at Nundydurg Mines

KGF 1951-1954 - GM Counter array upto a depth of 900 ft ($E_{\mu} \sim 200 \text{ GeV}$)

- **1. Double coincidence circuits.**
- 2. Cathode follower.
- 3. Film advancing circuits.
- 4. Inverter.

Large Cloud Chamber

KGF 1960-1963 Up to a depth of 2.7 km. (800 – 8400 mwe)

Miyake, Narasimham, Ramanamurthy

Most comprehensive Depth-intensity curve

Neutrino Experiment at KGF 1965 onwards

Atmospheric neutrino detection in 1965

Atmospheric neutrino detector at Kolar Gold Field –1965

DETECTION OF MUONS PRODUCED BY COSMIC RAY NEUTRINO DEEP UNDERGROUND

C. V. ACHAR, M. G. K. MENON, V. S. NARASIMHAM, P. V. RAMANA MURTHY and B. V. SREEKANTAN, Tata Institute of Fundamental Research, Colaba, Bombay

> K. HINOTANI and S. MIYAKE, Osaka City University, Osaka, Japan

D. R. CREED, J. L. OSBORNE, J. B. M. PATTISON and A. W. WOLFENDALE University of Durham, Durham, U.K.

Received 12 July 1965

Physics Letters 18, (1965) 196, dated 15th Aug 1965

Neutrino Events at KGF

Muon Angular Distribution Deep Underground

- At very small residual thickness of the atmosphere, (< 200 gms/cm²), the density of air is proportional to the thickness of the atmosphere itself.
- Decay probability is inversely proportional to density and thus increases as $\sec\theta$
- Any deviation from this secθ will suggest new source of atmospheric muons other than pion/kaon decay

KGF Phase I Nucleon Decay Detector (1979-1992)

KGF Phase-I Nucleon Decay Detector

Inauguration of KGF Phase-II Nucleon Decay Laboratory (1983)

KGF Phase-II Nucleon decay Experiment 1984-1992

Neutrino Events

DØ Detector fabrication

CMS Detector Fabrication work

India-Based Neutrino Observatory (INO)

2mX2m RPC Test Stand at TIFR

INO site at BodiHills

INO-ICAL Detector

Construction of RPC

Two 2 mm thick float Glass Separated by 2 mm spacer

2 mm thick spacer

Pickup strips

Resistive coating on the outer surfaces of glass

RPC building blocks

Early results on RPC efficiencies and time resolution

Efficiency

Time resolution

Fabrication of 1m x 1m RPCs

Final RPC Frontier - Making of 2m x 2m RPCs

RPC fabrication at Asahi Float Glass Co.

A journey through RPC road

10 cm x 30 cm

100 cm x 100 cm

30 cm x 30 cm

Prototype RPC Stack at TIFR tracking Muons

Event number: 175 (Vmin = -162mV)

2m x 2m glass RPC test stand

cosmic ray tracks in the RPC stand

Demonstrate the Tracking Capability of the RPC system

Running Prototype RPC Stack at TIFR

Zenith angle of muon, measurement of cosmic muon flux as well as it angular dependency

Input to detector simulation and digitisation

Newly developed gas recirculation system

Close loop gas recirculation and purification system

Automatic RPC gap making

Industrial production of RPC

Running of Prototype RPC Stack at Madurai

Operational since last one year

Publications RPC R & D

List of publications:

- JCAP, 07, 2012, 033
- NIM A678, 105, 2012
- NIM, A694, 126, 2012
- NIM A661,64, 2012
- NIM A661,68, 2012
- NIM A661,73, 2012
- NIM A661,77, 2012
- NIM A661, 234, 2012

- NIM A602, 784, 2009
- NIM A602, 744, 2009
- NIM A 602, 845, 2009
- NIM A 602, 835, 2009
- NIM A 701, 153, 2013
- NIM A 736, 13, 2014
- JINST 11, 2016