

Long-Baseline Program at Fermilab: Current Results and Future Expectations

International Workshop on Frontiers in Electroweak Interactions of Leptons and Hadrons, AMU, 2-6 Nov., 2016

꿏

Brajesh Choudhary University of Delhi

What do we know about the Neutrinos?

There are three generations of light neutrinos, they have mass, hence they mix and it has been confirmed by the Nobel Committee in 2015.

Post v2016 Status

NuFIT 2.2 (2016)

1.1	S					
90	Normal Ordering (best fit)		Inverted Ordering ($\Delta \chi^2 = 0.56$)		Any Ordering	
43		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	3σ range
9.5	$\sin^2 \theta_{12}$	$0.308\substack{+0.013\\-0.012}$	$0.273 \rightarrow 0.348$	$0.308^{+0.013}_{-0.012}$	$0.273 \rightarrow 0.349$	$0.273 \rightarrow 0.348$
140	$\theta_{12}/^{\circ}$	$33.72_{-0.76}^{+0.79}$	$31.52 \rightarrow 36.18$	$33.72_{-0.76}^{+0.79}$	$31.52 \rightarrow 36.18$	$31.52 \rightarrow 36.18$
Xiv:	$\sin^2\theta_{23}$	$0.440^{+0.023}_{-0.019}$	$0.388 \rightarrow 0.630$	$0.584^{+0.018}_{-0.022}$	$0.398 \rightarrow 0.634$	$0.388 \rightarrow 0.632$
ar	$ heta_{23}/^{\circ}$	$41.5^{+1.3}_{-1.1}$	$38.6 \rightarrow 52.5$	$49.9^{+1.1}_{-1.3}$	$39.1 \rightarrow 52.8$	$38.6 \rightarrow 52.7$
)52 ,	$\sin^2\theta_{13}$	$0.02163\substack{+0.00074\\-0.00074}$	$0.01938 \to 0.02388$	$0.02175\substack{+0.00075\\-0.00074}$	$0.01950 \to 0.02403$	$0.01938 \to 0.02396$
4) ($\theta_{13}/^{\circ}$	$8.46_{-0.15}^{+0.14}$	$8.00 \rightarrow 8.89$	$8.48^{+0.15}_{-0.15}$	$8.03 \rightarrow 8.92$	$8.00 \rightarrow 8.90$
(201	$\delta_{ m CP}/^{\circ}$	289^{+38}_{-51}	$0 \rightarrow 360$	269^{+39}_{-45}	$146 \to 377$	$0 \rightarrow 360$
P 11	$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	$7.49\substack{+0.19 \\ -0.17}$	$7.02 \rightarrow 8.08$	$7.49^{+0.19}_{-0.17}$	$7.02 \rightarrow 8.08$	$7.02 \rightarrow 8.08$
JHE	$\frac{\Delta m^2_{3\ell}}{10^{-3}~{\rm eV}^2}$	$+2.526^{+0.039}_{-0.037}$	$+2.413 \rightarrow +2.645$	$-2.518\substack{+0.038\\-0.037}$	$-2.634 \rightarrow -2.406$	$ \begin{bmatrix} +2.413 \to +2.645 \\ -2.630 \to -2.409 \end{bmatrix} $

Total 3 σ relative precision on parameters: θ_{12} ~14%, θ_{23} ~32%, θ_{13} ~15%, Δm_{21}^2 ~14%, $|\Delta m_{31}^2|$ ~11%. Divide by 2 for getting ±3 σ error.

Gonzales-Garcia, Maltoni, Salvado, Schwetz

2.November.2016

Long- and Short-Baseline Science Goals

- CP Violation in Neutrino Sector
 - Violation of a fundamental symmetry of nature; viability of leptogenesis models -> matter/antimatter
- Neutrino Mass Ordering (or Hierarchy)
 - GUTs, Dirac vs. Majorana nature and feasibility of 0v88 decay
- Testing the Three-Flavor Paradigm
 - Precision measurements of known fundamental mixing parameters for neutrinos and anti-neutrinos
 - New physics -> non-standard interactions, sterile neutrinos... (beam + atmospheric v sources)
 - Precision neutrino interactions studies (near detector)
- Nucleon Decay
- Astrophysics: Supernova v burst

2.November.2016

AMU- LBL Physics @ FNAL

Open Questions in v-Physics with emphasis to Long-Baseline + Atmospheric Physics

- MH NOvA+T2K, JUNO/RENO-50, PINGU/ORCA/INO, HK, DUNE (Beam and Atmospheric independently)
 CPV – NOvA+T2K, DUNE, T2HK
 Precision on oscillation parameter – θ₂₃ octant
 Number of Neutrinos – 3+n-Sterile – SBL, LBL-ND
 Proton Decay – DUNE, Super-K/HK
 Supernova Neutrinos – DUNE, Super-K/HK, JUNO
- 7. Etc. etc.

Fermilab Neutrino Program

MINOS+ Goals

MINOS+ (E-1016, proposed in 2012) for continued exploitation of the NuMI beam and MINOS detectors (MINOS (E-875), proposed in 1995)

- ✓ improve measurements of "atmospheric" oscillations (by probing the multi-GeV energy region)
- ✓ search for light sterile neutrinos
- ✓ search for NSI and other "exotic" transitions (e.g., large extra dimensions)
- ✓ continue cosmic rays data acquisition & analysis

Requested in the proposal:

- ✓ 3 years of running (2013-2016)
- ✓ 18 x 10²⁰ POT
- ✓ Collect ~3000 v_µ CC events/year

MINOS and MINOS+

MINOS + MINOS + Analysis

Combine spectrum of MINOS & MINOS+ disappearance data.
 Can test the "rising edge" of the spectral ratio (survival Probability)
 A combined fit performed
 MINOS+ spectrum consistent with MINOS spectrum

2.November.2016

AMU- LBL Physics @ FNAL

✓ Main signatures

V_u CC spectrum – distortion from standard oscillation due to extra splitting

* NC spectrum will show deficit because of $v_{\mu} \rightarrow V_{s}$ oscillation

✓ Can happen in either ND or FD

✓ Increased sensitivity due to higher energy spectrum in MINOS+

2.November.2016

AMU- LBL Physics @ FNAL

PRL 117, 151803 (2016)

Distortion in ND analysis requires fundamental change in MINOS analysis

- Look for deviation in FD/ND energy spectrum from standard oscillation
 - Simultaneous fit to νμ CC and NC data

> CC and NC samples provide sensitivity to different components of sterile mixing

Best constraint till date on $V_{\mu} \rightarrow V_s$ disappearance for sterile neutrino mass 2.November 2016 splitting below 1 eV² PRL 117, 151803 (2016)

Sterile Neutrino Analysis MINOS + Bugey + Daya Bay

- disappearance from Bugey and Daya Bay
 - ✓ MINOS: 90% CL on θ_{24}
 - ✓ Bugey: 90% CL on θ_{14}
 - ✓ Daya bay: 90% CL on θ_{14}

✓ Construct combined limit on:

 $4|U_{e4}|^2|U_{\mu4}|^2 = \sin^2 2\theta_{14} \sin^2 \theta_{24} \equiv \sin^2 2\theta_{\mu e}.$

 ✓ Combined limit can be compared to LSND, MiniBooNE, NOMAD, KARMEN
 ✓ Rules out ∆m²₄₁ < 0.8 eV² at 95% CL

2.November.2016

AMU- LBL Physics @ FNAL

PRL 117, 151801 (2016)

- The long-baseline off-axis (14 mrad) neutrino oscillation experiment with functionally identical Near and Far Detectors.
- Data taking with complete detectors started in November 2014.
- First Results Announced on August 6, 2015.
- New Results Announced on July 4, 2016.
- Low-Z tracking calorimeters
- High power NuMI beam upgraded for NOvA to take the power from 350 to 700 kW.
- ^{2.November.2016}
 This result based on: 6.05 x 10²⁰ POT, 700 kW peak intensity, average = 550kW.

NOvA Collaboration

Argonne, Atlantico, Banaras Hindu University, Caltech, Cochin, Institute of Physics and Computer science of the Czech Academy of Sciences, Charles University, Cincinnati, Colorado State, Czech Technical University, Delhi, JINR, Fermilab, Goiás, IIT Guwahati, Harvard, IIT Hyderabad, U. Hyderabad, Indiana, Iowa State, Jammu, Lebedev, Michigan State, Minnesota-Twin Cities, Minnesota-Duluth, INR Moscow, Panjab, South Carolina, SD School of Mines, SMU, Stanford, Sussex, Tennessee, Texas-Austin, Tufts, UCL, Virginia, Wichita State, William and Mary, Winona State

Goals of NOvA Experiment

- Measure the oscillation probabilities of

 a) Appearance channels: v_µ → v_e and v_µ → v_e
 b) Disappearance channels: v_µ → v_µ and v_µ → v_µ
- Precision measurements of θ_{13} , Δm_{32}^2 , θ_{23}
- Probe the Mass Hierarchy
- Study the CP violation parameter $\boldsymbol{\delta}$

- Additional Physics Goals:
 - -Neutrino cross-sections and interaction physics
 - -Sterile Neutrinos
 - -Supernovae and Exotic Searches MU-LBL Physics @ FNAL

 $P(v_{\alpha} \rightarrow v_{\beta}) \neq P(\overline{v_{\alpha}} \rightarrow \overline{v_{\beta}})$?

NOvA FD Exposure

NOvA FD ~ 5 ms Block

NOvA FD ~ 12 µs Beam Window

NOvA FD - V_{μ} Candidate Event

AMU- LBL Physics @ FNAL

- Identify contained v_{μ} CC events in both Near and Far Detector
- Measure Energy
- Extract oscillation information from differences between the FD and ND energy spectra

v_{μ} Event Selection

- Isolate a pure sample of v_{μ} CC events less than 5GeV
 - Select events with long tracks
 - Suppress NC and cosmic backgrounds
- 4-variable kNN used to identify muon based on
 - track length
 - dE/dx along track
 - scattering along the track
 - track-only plane fraction
- ND data matches simulation well for
 MU- LBL Physics @ FNAL

Energy Measurement

- The reconstructed neutrino energy E_v of a contained v_μ CC event is given by $E_v = E_\mu + E_{had}$
- Near detector hadronic energy distribution suggests un-simulated process between quasi-elastic and delta production

Similar conclusions from MINERvA data reported in P.A. Rodrigues et al., PRL 116 (2016) 071802

Scattering in a Nuclear Environment

- Approach: Enable GENIE empirical Meson Exchange Current Model
- Reweight to match NOvA excess as a function of 3-momentum transfer
- 50% systematic uncertainty on MEC component
- Reduces largest systematics
 - hadronic energy scale
 - QE cross section modelin
- Reduce single non-resonant pion production by 50% (P.A. Rodrigues et al, arXiv:1601.01888.)

MEC model by S. Dytman, inspired by J. W. Lightbody, J. S. O'Connell, Computers in Physics 2 (1988) 57.

2.November.2016

NOvA v_µ Disappearance Search

Muon Neutrino FD Data

78 Events Observed in FD
473 ± 30 with no Oscillation
82 expected at Best Fit
3.7 Beam bkg + 2.7 Cosmics

 $\chi^2/NDF=41.6/17$ Driven by fluctuations in tail, no pull in oscillation fit

2.November.2016

AMU- LBL Physics @ FINAL

NuMu Disappearance Results. POT = 6.05E20

NOvA Preliminary

Best Fit (in NH):

$\left \Delta m_{32}^2\right $	$= 2.67 \pm 0.12 \times 10^{-3} \mathrm{eV}^2$
$\sin^2 \theta_{23}$	$= 0.40^{+0.03}_{-0.02} (0.63^{+0.02}_{-0.03})$

Maximal Mixing excluded at 2.5σ

AMU- LBL Physics @ FNAL

v_e Appearance Search

- Identify contained v_e CC events in both Near and Far Detector
- Use Near Detector Data/MC to predict beam backgrounds in the Far Detector
- Extract oscillation information from Far Detector excess over predicted
 backgrounds
 Ist Analysis Published in PRL

✓ Improved Event Selection

A new particle ID techniques used to identify v_e candidates: A convolutional neural network neutrino event classifier (CVN)

- Calibrated hit maps are inputs to Convolutional Visual Network (CVN)
- Series of image processing transformations applied to extract abstract features
- Extracted features used as inputs to a conventional neural network to classify the event

Improvement in sensitivity from CVN equivalent to 30% more exposure

Technique published in JINST 11 (2016) no.09, P09001

v_e Appearance Search

- Identify contained v_e CC events in both Near and Far Detector
- Use Near Detector Data/MC to predict beam backgrounds in the Far Detector
- Extract oscillation information from Far Detector excess over predicted
 backgrounds
 Ist Analysis Published in PRL

✓ Improved Event Selection

A new particle ID techniques used to identify v_e candidates: A convolutional neural network neutrino event classifier (CVN)

- Calibrated hit maps are inputs to Convolutional Visual Network (CVN)
- Series of image processing transformations applied to extract abstract features
- Extracted features used as inputs to a conventional neural network to classify the event

Improvement in sensitivity from CVN equivalent to 30% more exposure

- Selection optimized to favor parameter measurement
 - both cosmic rejection and classifier cut
 - increased signal efficiency, including lower purity bins
- Used ND data to predict background in FD
 - NC, CC, beam v_e each propagate differently
 - constrain beam v_e using selected v_{μ} CC spectrum
 - constrain v_{μ} CC using Michel Electron distribution

Beam v_e up by 4% NC up by 10% v_u CC up by 17%

Far Detector v_e Signal Prediction

- Extrapolate each background component in bins of energy and CVN output
- **Expected event counts depend on oscillation parameters**
- Signal event with ±5% systematics

NH, 3π/2,	IH, π/2,
28.2	11.2

Background by component (±10% systematics)

Total BG	NC	Beam ν _e	ν_{μ} CC	v_{τ} CC	Cosmics
8.2	3.7	3.1	0.7	0.1	0.5
and the Article States - Proven	and the second all provide the second	the second state of the second s	and the second states and the	and the second states and the	and the second states and the

Far Detector selected $\nu_{\rm e}\,{\rm CC}$ candidate

Far Detector selected $\nu_{\rm e}$ CC candidate

Far Detector v_e Data vs Prediction

>8σ electron neutrino appearance signal

NovA v_e Appearance Results

• Fit for hierarchy, δ_{CP} , $\sin^2 \vartheta_{23}$

- Inputs:
 - $\sin^2(2\vartheta_{13}) = 0.085 \pm 0.05$
 - $-\Delta m^2 = 2.44 \pm 0.06 \times 10^{-3} eV^2,$ NH
 - $-\Delta m^2 = -2.49 \pm 0.06 \times 10^{-3} \, eV^2,$ IH
 - Systematic effects included as nuisance parameters (normalization, flux, calibration, cross-section, and detector response effects)

NovA v_e Appearance Results

AMU- LBL Physics @ FNAL

- Fit for hierarchy, δ_{CP} , $\sin^2 \vartheta_{23}$
 - Constrain Δm^2 and $\sin^2 \vartheta_{23}$ with NOvA disappearance results
 - Not a full joint fit, systematics and a other oscillation parameters not correlated between two samples
- Global best fit Normal Hierarchy

 $δ_{CP} = 1.49π$ Sin²(θ₂₃) = 0.40

- best fit IH-NH, $\Delta \chi^2 = 0.47$
- both octants and hierarchies allowed at 1σ
- 3σ exclusion in IH, lower octant around $\delta_{CP} = \pi/2$

2.November.2016

Neutral Current ND Data

✓ Events classified using CVN
 ✓ Normalization agrees well
 ✓ Data shifted to lower
 energy compared to MC
 ✓ No MEC model for the NC

events
 ✓ Large uncertainties on the NC X-section

Extrapolation of ND data using F/N in reconstructed energy gives a prediction:

Total	NC	ν_{μ} CC	Beam ν _e	Cosmics	
83.7±8.3	60.6	4.8	3.6	14.3	

Observed 95

 events
 No oscillation
 observed in NC
 Data

For 0.05 eV² < Δm_{41}^2 < 0.5 eV² $\theta_{34} < 35^\circ, \ \theta_{24} < 21^\circ \ (90\% C.L.)$

NC efficiency = 50%, Purity = 72%.

NOVA Physics – MH

NOvA will measure $P(v_{\mu} \rightarrow v_{e}) \& P(vbar_{\mu} \rightarrow vbar_{e}) at 2 GeV$

Large θ_{13} is better for NOvA. It reduces the overlap between these bi-polarity ellipses, reducing the likelihood of degeneracy

2.November.2016

A measurement of the probabilities might allow resolving the MH and provide information on $\delta_{\rm CP}$

AIVIU- LBL Physics (@ FNAL

Additional sensitivity from T2K.

NOvA has limited sensitivity to CP measurement.

Marginal sensitivity from T2K.

NOvA in the Long Run?

✓ If NOvA and T2K ran for 12 years each – up to 2025-26
 ✓ If NOvA achieves a further 20% and T2K achieves a further 10% gain in sensitivity through analysis improvements

NOvA in the Long Run?

✓ If NOvA and T2K ran for 12 years each – up to 2025-26
 ✓ If NOvA achieves a further 20% and T2K achieves a further 10% gain in sensitivity through analysis improvements

NovA Summary and Prospects

- NOvA results with 6.05 x 10²⁰ POT exposure
- ν_µ Disappearance result
 -Best fit is non-maximal: Maximal mixing excluded at 2.5σ
- v_e Appearance result

 Electron neutrinos appear at > 8σ
 Data prefers NH at low significance
 Region in IH, lower octant around δ_{CP} = π/2 is excluded
- Neutral current event rate shows no evidence of sterile neutrinos
 -With more data, expect strong limits on ϑ₃₄
- NOvA to take anti-neutrino data

 Short anti-neutrino run taken in Summer 2016
 Long anti-neutrino run anticipated to start in Spring 2017

LBNF/DUNE Long-Baseline Neutrino Facility **Deep Underground Neutrino Experiment**

2.November.2016

LBNF – DUNE Science Goals

- CP Violation in the Neutrino Sector
- Neutrino Mass Hierarchy
- Testing the Three-Flavor Paradigm
- Nucleon Decay
- Astrophysics: Supernova v burst and Low energy Neutrinos

A Global Collaboration of 856 collaborators from 149 institutions and 29 countries – several institutions from India too.

2.November.2016

DUNE – Far Detectors – 40kt LAr TPC Modules

Cavern layout at the Stanford Underground Research Facility (SURF):

- ✓ Four chambers hosting four independent 10kT FD modules
 - Gives flexibility for staging & evolution of LAr-TPC technology design
 - Assume four identical cryostats: 15.1 (W) X 14.0 (H) X 62 (L) m³
 - > The four 10kT modules will be similar but may not be identical

DUNE – Far Detectors – Development

✓ Single-phase LAr-TPC (APA Readout) Evolution from ICARUS – design well advanced Supported by strong program at Fermilab ***** 35-t prototype (run ended 01/2016) Micro-BooNE (operational since 2015) **SBND** (aiming for operation in 2018) ✓ Dual-phase LAr-TPC (CRP Readout) Demonstrated at 200-/ scale Large scale demonstration at CERN WA105 1X1X3 m³ prototype at CERN Proto-DUNE at CERN NP Large scale (~6X6X6 m³) engineering prototypes Formed from full-scale detector elements > 6 full-sized APAs c.f. 150 APAs in 10-kT FD modules

DUNE ND – High Resolution FGT

Precisely measure neutrino beam spectra and flavor Constraint systematics Neutrino Interaction Physics New Searches

Transition Radiation $\Rightarrow e^{+/-} ID \Rightarrow \gamma$ dE/dx $\Rightarrow Proton, \pi^{+/-}, K^{+/-}$ Magnet/Muon Detector $\Rightarrow \mu^{+/-} e^{+/-}$ $\chi^{sics} \stackrel{@}{\to} ID \Rightarrow \gamma$

DUNE Beam Design Optimization

Parameter	CDR Reference Design	Optimized Design
Proton Beam Energy	80 GeV	80 GeV
Proton Beam Power	1.07 MW	1.07 MW
Target	Graphite	Graphite
Horn Current	230 kA	297 kA
Horn Design	NuMI-style	Genetic Optimization
Decay Pipe Length	204 m	241 m
Decay Pipe Diameter	4 m	4 m

DUNE Sensitivity to MH

2.November.2016

DUNE Sensitivity to CPV

	Significance	CDR Reference Design	Optimized Design
	3σ for 75% of $\delta_{ m CP}$ values	1320 kt · MW · year	850 kt · MW · year
2 Novo	5 σ for 50% of $\delta_{\rm CP}$ values	810 kt · MW · year	550 kt · MW · year

due to potential variation in beam design.

2.November.2016

Physics Milestones – Early Physics Possible

Physics milestone	Exposure kt · MW · year (reference beam)	Exposure kt · MW · year (optimized beam)
$1^{\circ} \theta_{23}$ resolution ($\theta_{23} = 42^{\circ}$)	70	45
CPV at 3σ ($\delta_{ m CP}=+\pi/2$)	70	60
CPV at 3σ ($\delta_{ m CP}=-\pi/2$)	160	100
CPV at 5σ ($\delta_{\rm CP} = +\pi/2$)	280	210
MH at 5σ (worst point)	400	230
10° resolution ($\delta_{\rm CP} = 0$)	450	290
CPV at 5σ ($\delta_{\rm CP} = -\pi/2$)	525	320
CPV at 5σ 50% of $\delta_{ m CP}$	810	550
Reactor θ_{13} resolution	1200	850
$(\sin^2 2\theta_{13} = 0.084 \pm 0.003)$		
CPV at 3σ 75% of δ_{CP}	1320	850

Best Case Scenario: CPV ($\delta_{CP} = +\pi/2$) – 60-70 kt.MW.yr for 3 σ sensitivity MH – 20-30 kt.MW.yr for 5 σ sensitivity

Precision measurements of U_{PMNS} with laboratory experiments.

And, huge opportunities for underground science! proton decay, supernova... etc

- Why is leptonic mixing angles large compared to quark mixing in CKM?
- Is there any pattern in UPMNS that guide us to the theory of flavor
- Is U_{PMNS} unitary?

The journey of PMNS unitarity test in the precision neutrino physics era just began!

> X.Qian, C.Zhang, P.Vogel, M.Diwan arXiv: 1308.5700

	JUNO	LBNE
sin ² 20 ₁₂	0.7%	
Δm ² 21	0.6%	
Δm ² ₃₂	0 .5%	0.3%
ΜН	3-4σ*	>5σ
sin ² 20 ₁₃	14%**	3%
sin ² θ ₂₃		3%
δ _{CP}		10 °

From Milind Diwan's Talk at KITP

* 4σ requires 1% Δm²_{uu}

** Daya Bay reaches 3%

LBNE is a comprehensive experiment. When combined with a reactor effort we characterize the whole matrix redundantly.

Atmospheric Neutrinos – MH Sensitivity

Zenith angle distributiosns for events w/E 6-10 GeV. Comparison of NH vs MH.

2.November.20

Atmospheric Neutrinos – MH Results

MH sensitivity is roughly independent of CP Phase

2.November.2016

DUNE- Other Topics

- ✓ Neutrino Interaction Physics
 ✓ Indirect Dark Matter Searches
 ✓ Cosmic Ray Physics
 ✓ Lorentz and CPT violations
 ✓ Extra Dimensions
 ✓ NSI
 ✓ Sterile Neutrinos
- Exploring potential of lower energy neutrino studies:
 - Solar neutrinos
 - Diffuse Supernova neutrino background
LBNF/DUNE Schedule

ANO LOLINYSIUS WINAL

2.110/011001.2010

- LBNF/DUNE will be a game-changing program in neutrino physics and astro-particle physics
 - Definitive 5σ determination of MH
 - Broad exploration of leptonic CPV with significant prospects for discovery
 - Precisely test 3-flavor oscillation paradigm
 - Extend sensitivity to nucleon decay
 - Unique measurements of supernova neutrinos (if one should occur in the lifetime of the experiment)
 - Generational advance in precision neutrino physics at the near site
- A strong world-wide collaboration has formed to build the experiment
 - LAr TPC Far Detector,
 - Task force looking into various designs of ND -
 - Fine-Grained Tracker Near Detector a possibility
 - MW-class Neutrino Beam
- The LBNF/DUNE Project is moving ahead.

2.November.2016

AMU- LBL Physics @ FNAL

