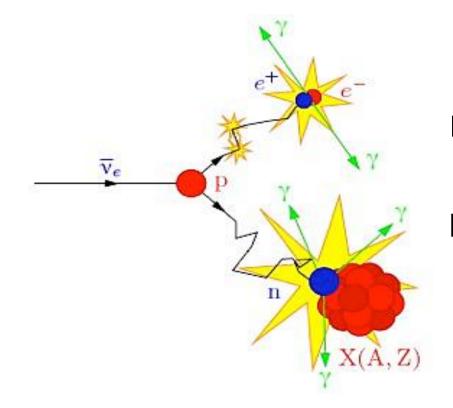


Indian Scintillator Matrix for Reactor Anti-Neutrino detection

D. Mulmule^{*}, P. K. Netrakanti, A. Mitra, V. K. S. Kashyap, V. Jha, D. K. Mishra, S. P. Behera, L. M. Pant, B. K. Nayak & A. Saxena


Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India

* email : dhruv.mulmule@gmail.com

Introduction :

Reactor anti-neutrino detection:

- Anti-neutrino from reactors provide an excellent non-intrusive probe for monitoring reactor core composition
- The detection of $\overline{v_e}$ through the inverse beta decay, with its distinct prompt and delayed event signature, is a useful technique for the above purpose which is being pursued actively across the world by many groups[1]

Inverse Beta Decay $\overline{v_e} + p \rightarrow n + e^+$ **Prompt e⁺ signal: Energy loss+Annihilation** $e^+ + e^- \rightarrow 2 \gamma$ **Delayed neutron signal: Capture on Gd** $n + {}^{155}Gd \rightarrow {}^{156}Gd \rightarrow {}^{156}Gd + \gamma's$ $n + {}^{157}Gd \rightarrow {}^{158}Gd \rightarrow {}^{158}Gd + \gamma's$

The Proposed Detector (ISMRAN) :

Background measurements @ **Dhruva reactor** :

- Due to very small neutrino interaction cross-section (~10⁻⁴³ cm²) reactor background dominates over the neutrino signal
- Measurements were performed using liquid and plastic[2,3] and scintillators inside the reactor hall using different configurations of shielding

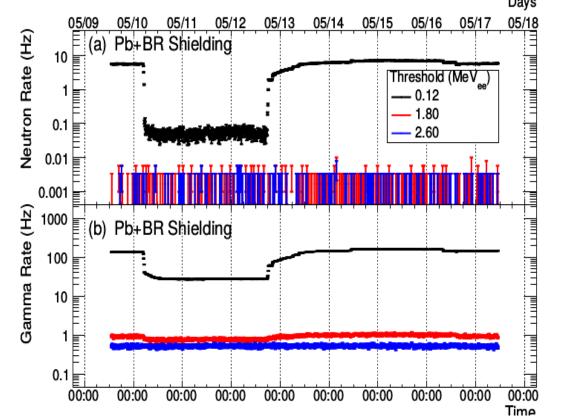


Fig 4. Left : Gamma and neutron background rates measured using 5" diameter, NE-213 liquid scintillator with 10cm thick Pb + 1cm thick boronated rubber sheets during both reactor ON and OFF periods.[3] Right : Snapshot of the prototype detector setup (PS : 6cm x 6cm x 100cm) in the Dhruva reactor hall

- Segmented geometry : Plastic Scintillator (PS) bars of 10cm x 10cm x 100cm directly coupled to 3" PMTs at both ends
- Each bar wrapped with a reflective aluminized mylar film coated with 4.8 mg/cm² density Gadolinium (Gd) paint to facilitate neutron capture

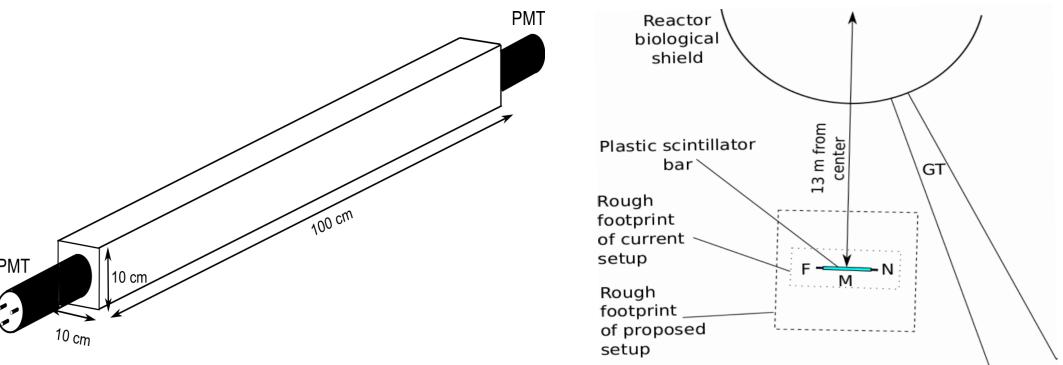
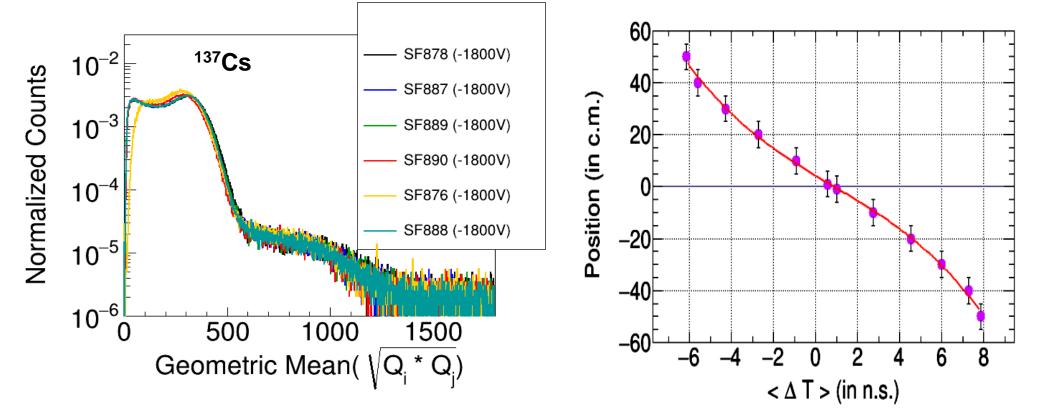



Fig 1. Left : Plastic Scintillator (PS) bar. Right : Detector position inside reactor hall

- Total 100 such bars forming a 1m³ volume of 1 ton weight of detector.
- About 115 neutrino interactions per day are expected a 13m distance from the reactor core operating at 100 MW_{th}
- High sampling rate (500 MS/s) digitizers to read the 200 PMT channels.

Characterization of 10x10x100cm³ PS bars :

Energy calibration and position dependent response measurements:

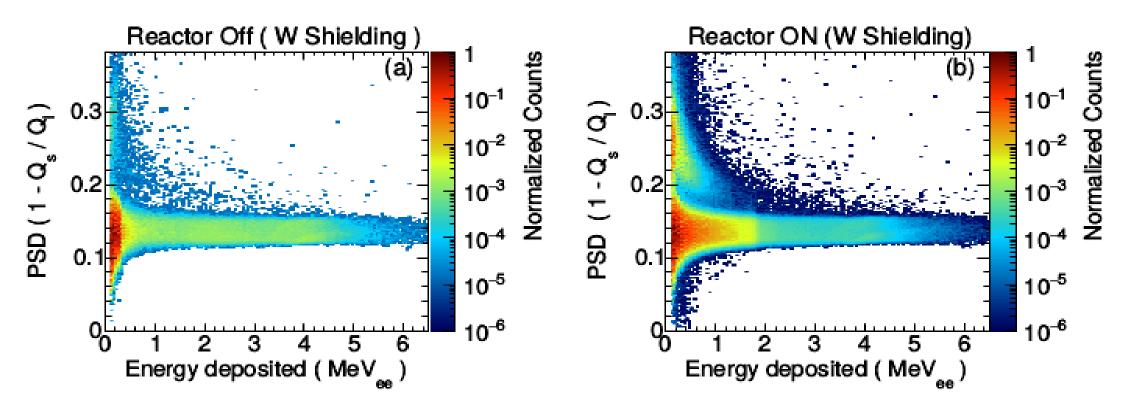
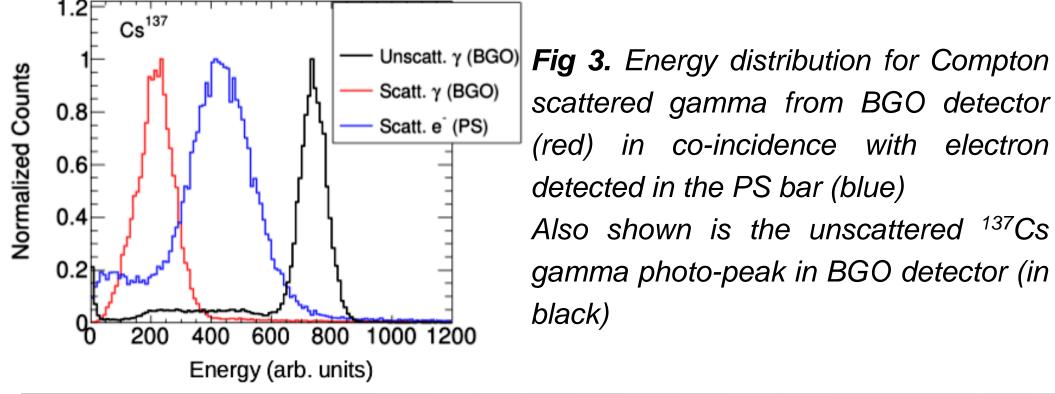


Fig 5 : Pulse shape discrimination parameter as a function of energy deposited using NE-213 Liquid scintillator detector in reactor ON and OFF conditions.

Table 1. Background statistics obtained in a 4x2 matrix of 6cm x 6cm x 100cm PS bars. Reduction can be seen in PS bars, when in addition to shielding, certain specific co-incidence conditions are applied (here 2 bars firing in a certain time window of the order of 100 μ s). Reactor was operating between 80-85 MW.

Various Configurations	Count Rates (Hz)
No Shielding (Single PS bar)	30000
10 cm Pb (Single PS bar)	2000
10 cm Pb (Co-incidence of two PS bars)	300
10 cm Pb + 1 cm of Boronated Rubber (Co-incidence of two PS bars)	70


Boronated

Lead

Outlook:

• Detection of anti-neutrinos in current set-up will need a S/B ratio of at least 1:10 and also a thorough understanding of background Polyethylene (30%) sources, both originating from reactor and the cosmogenic sources. These studies are

Fig2 : Left : Response of PS bars for ¹³⁷Cs source. Right : Parametrization of hit position as a function of time difference from both the ends of a PS bar

currently being pursued.

- Trigger logic implementation at hardware level for candidate anti-neutrino events **Core Detecto**
- We plan to setup mini-ISMRAN with a matrix of 4x4 (PS: 10cm x 10cm x 100cm) in a non-reactor environment, before shifting to Dhruva reactor hall

Fig 6. The final setup (tentative) consisting of 100 PS bars with shielding and muon veto scintillators Is shown in figure alongside.

References :

[1] Y. Kuroda et. Al, Nuclear Instruments and methods A, 690 (2012), 41-47.

[2] V.K.S. Kashyap et. Al, Proceedings of the DAE-BRNS Symp. on Nucl. Phys. 60 (2015)

[3] Neutron and Gamma rate measurements at Dhruva reactor for ISMRAN experiment, DAE-BRNS Symposium 2016, SINP, Kolkata(submitted)

International Workshop on Frontiers in Electroweak Interactions of Leptons and Hadrons, November 02-06, AMU , Aligarh, Uttar Pradesh