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Introduction

The investigation of the structure of thorium (Th) and uranium (U) nuclei have been
at the focus of attention in nuclear physics due to the thermally fissile nature of some
of their isotopes. The series of U and Th isotopes with N = 154− 172 are identified as
thermally fissile on the basis of the fission barrier height and neutron separation energy.
All these isotopes are stable against α-decay and among these, the one with low mass
have large β half-life time. However, the isotopes with N = 126 − 140 are β-stable
but decay through α mode. So, in order to study the fission, the potential energy
surface (PES) as a function of deformation plays a crucial role. The PES of Th and
U, characterised by a two-humped barrier structure, has been extensively been studied
both theoretically and experimentally. So, we tried to study the decay properties of Th
and U isotopes. We have used the covariant density functional theory (CDFT) with
density dependentinteractions(DD-ME1,DD-ME2,DD-PC1) in order to calculated the
different properties.

Thoretical Formalism

Covariant density functional theory (CDFT) is based on density dependent vertices
and one additional parameter characterising the range of the forces which are den-
sity dependent meson-exchange (DD-ME), and a point-coupling (DD-PC)[1] effective
interactions. The basic difference of these two models lies on the treatment of the
interaction range, the mesons, and the density dependence. Both DD-ME and DD-PC
are density-dependent models but DD-ME has a finite interaction range, while DD-PC
uses a zero-range interaction with one additional gradient term in the scalar-isoscalar
channel. Each of these models is represented here by their corresponding parameter
sets as DD-ME1, DD-ME2 and DD-PC1. The meson-exchange phenomenology de-
scribes nucleus as a system of Dirac nucleons, interacting via the exchange of mesons
with finite masses, leading to finite-rang interaction. The standard Lagrangian density
of meson-exchange (finite-range) model with medium dependence vertices is written
as:
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The isoscalar-scalar σ meson, the isoscalar-vector ω meson, and the isovector-vector ρ meson build the minimal set

of meson fields for a quantitative description of nuclei. The density-dependent of the meson-nucleon couplings is

parameterized. The couplings of the σ and ω mesons to the nucleon field are defined as

gi(ρ) = gi(ρsat)fi(x ) for i = σ, ω

where

fi(x ) = ai
1 + bi(x + di)

2

1 + ci(x + di)2

is a function of x = ρ/ρsat, and ρsat denotes the baryon density at saturation in symmetric nuclear matter. The

eight real parameters in but constrained as follows:

fi(1 ) = 1 , f ′′σ (1 ) = f ′′ω (1 ), f ′′i (0 ) = 0 .

These five constraints reduce the number of independent parameters to three. Three additional parameters in the

isoscalar channel are gσ(ρsat), gω(ρsat), and mσ. The functional form of the density-dependence for the ρ-meson

coupling is suggested by a Dirac-Brueckner calculations of asymmetric nuclear matter

gρ(ρ) = gρ(ρsat)exp
[
−aρ(x− 1)

]
The effective Lagrangian for the density-dependent point-coupling model that includes the isoscalar-scalar, isoscalar-

vector and isovector-vector four-fermion interactions is given by

L = ψ̄(iγ.∂ −m)ψ
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The functional form of the point-couplings chosen is

αi(ρ) = ai + (bi + cix ) e−dix , (i = S, V, TV )

where x = ρ/ρsat, and ρsat denotes the nucleon density at saturation in symmetric nuclear matter.

Pairing correlation plays an important role in studying the nuclear structure of open-shell nuclei. The model provides

a unified description of particlehole (ph) and particleparticle (pp) correlations on a mean-field level by using two

average potentials: the self-consistent mean field that encloses all the long range ph correlations, and a pairing field

∆ which sums up the pp-correlations. The pairing force in coordinate representation

V pp(r1, r2, r
′
1, r
′
2) = −Gδ(R−R′)P (r)P (r′),

where R = 1√
2
(r1 + r2) and r = 1√

2
(r1− r2) denotes the center of mass and the relative coordinate, respectively, P(r)

is the Fourier transform of gaussian function (P (k) = e−a
2k2 )

P (r) =
1

(4πa2)3/2
e−r

2/2a2

Results and Discussions
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The potential energy surface map as a function of quadrupole deformation parameter

can be performed by the constraint calculation.

〈H ′〉 = 〈H〉 +
1

2
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There is a shallow third hump in 230−232Th isotopes which is supported by high res-
olution cross-section measurements. The third minima on the PES is mainly caused
due to the large proton gap at the fermi surface at Z=90.
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Evolution of single-nucleon shell structure with deformation is the origin of different
shapes and shape transitions. 216−230U are found to be spherical and 232−268U are
deformed neutron-rich isotopes.
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The Qα energy can be evaluated by using the relation

Qα(N,Z) = BE(N,Z)−BE(N − 2, Z − 2)−BE(4He) (1)

where BE(N,Z), BE(N-2,Z-2) and BE(4He) are the BEs of parent, daughter and alpha

particle (= 28.296 MeV) with neutron number N and proton number Z. After calculat-

ing the Qα values of the nuclei, we can estimate the T α1/2(s) using the phenomenological

formula of Viola and Seaborg [2]

log10T
α
1/2(s) =

(aZ − b)√
Qα

− (cZ + d) + hlog (2)

The Qα of even-even isotopes of thorium decreases with the increase in the number
of neutrons which means nuclei become stable against the α-decay. Accordingly, the
T α1/2(s) of these isotopes increases linearly with increase in mass number.
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In order to calculate the T1/2(β), we have calculated the Qβ by using the relation

Qβ(N,Z) = BE(N,Z + 1)−BE(N,Z) (3)

and by using the empirical formula of Fiset and Nix [3]

Tβ = (540× 105)
me5

ρDOS(W 6
β −me

6)
s

, we have calculated the half-lives of neutron rich Th and U isotopes.

The half-life time T
β
1/2
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From the results, it is clear that neutron-rich thorium and uranium isotopes undergo
β-decay, which mean once a thermally fissile nuclei is formed (artificially in lab. or
naturally by supernovae explosion), it immediately decay. All the interactions show

almost same behaviour.So, for practical utility purposes, isotopes with greater
half-life time are choosen.

Conclusion

In this work, we have carried out :
Systematic investigation to study the bulk properties and the microscopic structure of neutron rich even-even
216−268Th and 218−268U nuclei.
The investigations have been done within covariant density functional theory, and the explicit density-dependent
effective interactions as DD-ME1, DD-ME2, and DD-PC1 were used in the calculations.
Proper treatment to the pairing correlations is taken care in the formalisms.
We have calculated the binding energy, rms radii, quadrupole deformation parameter to understand the ground state
properties of these nuclei.
The potential energy surface have been studied to understand the structure and the behaviour of these nuclei.
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