

FCC Availability Studies

Andrea Apollonio, TE-MPE-PE 17/03/2016

Acknowledgements: R. Alemany Fernandez, M. Benedikt, V. Begy, J. Gutleber, A. Niemi, E. Rogova, A. Romero Marin, J.-P. Penttinen, R. Schmidt, P. Sollander

3/17/2016

Motivation

- Technological and financial boundary conditions set a limit for the peak beam performance for accelerators at the forefront of science
- Important to address availability requirements since early design stages and across entire accelerator lifecycle (starting with conceptual design)

Qualitative Definitions

- Availability is a measure of the useful time for user experiments during the accelerator run
- Key performance indicator for colliders is integrated luminosity [fb⁻¹]

Availability and Costs

Given a target integrated luminosity, life-cycle operational costs decrease with increasing availability

Scope of the Study

- Evaluate the suitability of industrial reliability methods in the domain of particle accelerators...
- □ ...taking the **LHC** as a case study
- Identify and analyse possible design and operational scenarios for a h-h Future Circular Collider
- □ Identify **key impact factors** on availability and luminosity production
- RAMS study DOES NOT give guidelines for individual system design and optimization

FCC-hh – A New Machine

□ How should it be operated?

- □ What would the FCC-hh cycle look like?
- □ What are the impacts of different injector designs/options?

□ How should it be maintained?

- □ What is the ideal number of scheduled shutdowns?
- How can planned/predictive/corrective maintenance contribute to availability improvements?

Accelerator Schedule

FCC-hh – Injector Options

The LHC – Our Reference

□ What do we know from the LHC? (25 ns Run in 2015)

FCC-hh – A Complex Machine (1/2)

□ 4 times bigger machine = 4 times less availability?

□ LHC, today:

□ Average cycle time (not including stable beams) ~ 7 h

□ Availability ~ 70 %

□ Assumptions for FCC-hh:

- Use LHC as an injector
- Overall availability of the injector chain = 80% (90% LHC, 90 % SPS, 98 % PS complex)

	Cycle Duration	Failure Rates
Optimistic Cycle*	1.8 h	$\lambda_{LHC} x 4$ for distributed systems
Realistic Cycle	7 h	$\lambda_{LHC} x 4$ for distributed systems

* See presentation on FCC Cycle by R. Alemany Fernandez

FCC – A Complex Machine (2/2)

Optimistic Cycle

Requirements for luminosity production:

- Extremely high availability of the injector chain
- Extremely efficient cycling
- Significantly reduced downtime

Breakdown of System Downtime

Predictive Maintenance – Cryogenic Valves

17/03/2016

E. Rogova, TU Delft

LHC Availability Model

- Model failures and consequences
 - Failure probability
 - Downtime (identification, diagnostics, logistics, repair/recovery)
- Model system/accelerator dependencies
 - Infrastructure supplies
 - Injector complex

Model failure dependencies

- Operational modes (beam commissioning, user operation,...)
- Beam parameters (intensity, energy)
- Environmental effects

Model long term effects

- Experience
- Conditioning/deconditioning
- Ageing/maintenance effects

- Development of a LHC availability model
- □ Collaboration with Tampere University of Technology and RAMENTOR
- □ Software ELMAS used as a platform for modelling (Monte Carlo based)
- Markov-chain models for state transitions

Randomly generated failures (base on calculated probability distributions)

Active nodes

Example: Failures in Injectors only relevant at Injection from the LHC perspective

Example: Cryogenics Fault Tree

Model complexity – impossible to model the entire accelerator to a sufficient level of detail within the FCC study

- □ Start from top contributors to downtime
- Collaboration with TU Delft for cryogenic system modelling and prognostic methods

BONUS: the developed cryogenic fault tree will be used in 2016 for fault data capture by the cryo-operations team

Model Validation: 2012 Luminosity Production

Developed model allows reproducing 2012 LHC luminosity production (23.27 fb⁻¹)

Results from 1000 model iterations

Sensitivity Analyses – HL-LHC Case

CERN

22

Limits for Modelling

Data availability and data quality – impossible to derive reliability figures without a dedicated effort
Consistent monitoring of signal trends necessary for predictive maintenance

□ FCC RAMS database (collaboration with IT Department @CERN)

Conclusions & Outlook

- FCC-hh: big challenge from many different aspects, in particular from the availability point of view
- □ Future studies should focus on:
 - Definition of a fixed cycle duration
 - Analysis of different injector options (also influencing cycle duration)
 - Identify strategy for scaling number of components (e.g. number of power converters, redundancy in cryogenic system,...)
- Possibility: extend the study to the FCC-ee?
 - Requires expertise (and data) on lepton machines not trivial

Thanks a lot for your attention!

www.cern.ch