Photon-Jets

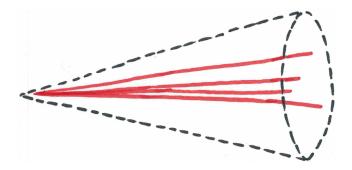
Jets and Photons, arXiv:1210.1855 Phenomenology of Photon-Jets, arXiv:1210.3657

Jakub Scholtz

Harvard

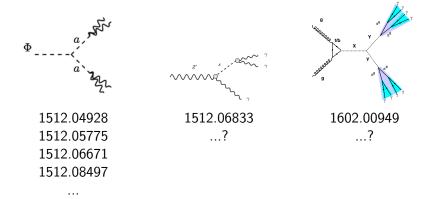
February 9, 2016

Searching for Exotic Hidden Signatures with ATLAS in LHC Run 2 Cosenza


Work done with Stephen D. Ellis, Tuhin S. Roy

J. Scholtz

Photon-Jets


Photon-jet

- a collection of two or more collinear photons, that form a jet like deposition in the calorimeters

750 GeV Excess Introduction/Motivation

Amongst the deluge of papers, there were possible explanations for the excess that use the idea of Photon-Jets:

Since this new resonance and the Higgs might mix, we might expect Photon-Jets in both samples (with different cross-sections)

m _a	$R_{\gamma\gamma}(h(125))$	$R_{\gamma\gamma}(\Phi(750))$
0.5 GeV	0.016	0.0026
1 GeV	0.032	0.0053
2 GeV	0.064	0.01
4 GeV	0.128	0.02

Motivation

- Apart from the 750 GeV excess...
- Photon-jets have been suggested as the source of (now gone) h → γγ excess by various groups: Dobrescu, Landsberg and Matchev; Draper and McKeen as well as Toro and Yavin.
- Some photon-jets will always leak into the tagged photon sample.
- On the other hand, our current photon identification may be so tight, it may be throwing away photon-jets – we could be throwing away a possible signal of new physics.
- Photon-jets are both photon-like and jet-like, therefore we need a new category.

Previous Work

Photon-jets have been suggested by various groups:

B. A. Dobrescu, G. L. Landsberg, and K. T. Matchev, "Higgs boson decays to CP odd scalars at the Tevatron and beyond," *Phys. Rev.* D63 (2001) 075003, arXiv:hep-ph/0005308 [hep-ph].

S. Chang, P. J. Fox, and N. Weiner, "Visible Cascade Higgs Decays to Four Photons at Hadron Colliders," *Phys. Rev. Lett.* 98 (2007) 111802, arXiv:hep-ph/0608310 [hep-ph].

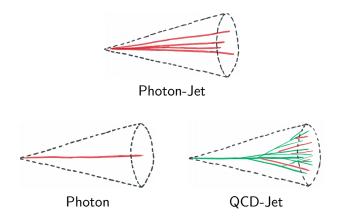
N. Toro and I. Yavin, "Multiphotons and photon jets from new heavy vector bosons," *Phys. Rev.* D86 (2012) 055005, arXiv:1202.6377 [hep-ph].

P. Draper and D. McKeen, "Diphotons from Tetraphotons in the Decay of a 125 GeV Higgs at the LHC," *Phys. Rev.* D85 (2012) 115023, arXiv:1204.1061 [hep-ph].

S. D. Ellis, T. S. Roy, and J. Scholtz, "Jets and Photons," *Phys. Rev. Lett.* **110** no. 12, (2013) 122003, arXiv:1210.1855 [hep-ph].

S. D. Ellis, T. S. Roy, and J. Scholtz, "Phenomenology of Photon-Jets," *Phys. Rev.* D87 no. 1, (2013) 014015, arXiv:1210.3657 [hep-ph].

D. Curtin et al., "Exotic decays of the 125 GeV Higgs boson," Phys. Rev. D90 no. 7, (2014) 075004, arXiv:1312.4992 [hep-ph].


And looked for:

ATLAS Collaboration, G. Aad *et al.*, "Search for new phenomena in events with at least three photons collected in *pp* collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector," arXiv:1509.05051 [hep-ex].

ATLAS Collaboration, "Search for a Higgs boson decaying to four photons through light CP-odd scalar coupling using 4.9 fb^{-1} of 7 TeV pp collision data taken with ATLAS detector at the LHC,".

ATLAS-CONF-2012-079

We will try to separate these three categories:

Part of the Answer

- If we want to compare QCD-jets, photon-jets and photons, we need a common basis.
- Right now, we search for photons one way (use seeds, calorimeter towers, etc.), for QCD-jets another way (jet algorithms) and don't look for photon-jets at all.
- Instead, search for jets and then tag each of them as either a QCD-jet, a photon or a photon-jet, based on their properties.

$$\mathrm{Jets} = \left\{ \overbrace{\qquad \qquad }, \overbrace{\qquad \qquad }, \overbrace{\qquad \qquad }, \overbrace{\qquad \qquad }, \ldots \right\}$$

This talk

In our study we focused on **four** photon Photon-Jets. We did also study two photon Photon-Jets, but did optimized the search for them.

Study Points	$\begin{array}{c} m_1 \\ (\text{GeV}) \end{array}$	$\binom{m_2}{(\text{GeV})}$	$ \begin{array}{c} \mu_{12} \\ (\text{GeV}) \end{array} $	η_1	η_2
PJSP 1 PJSP 2 PJSP 3	$0.5 \\ 1.0 \\ 10.0$		0	х	
PJSP 4	2.0	0.5			
PJSP 5 PJSP 6	5.0	$0.5 \\ 1.0$	х	0	х
PJSP 7 PJSP 8	10.0	$0.5 \\ 1.0$			

- We focused on PJSP6.
- In our analysis all decays are prompt.

Outline

Model

Analysis

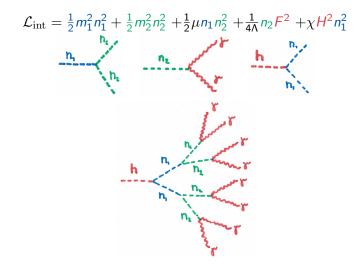
Oiscriminants

4 Results

6 Conclusion

Outline

Model


2 Analysis

Oiscriminants

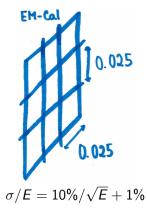
4 Results

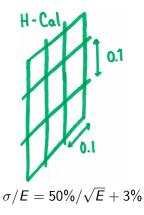
6 Conclusion

EFT Model

Outline

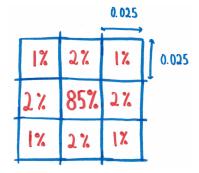
1 Model


2 Analysis


Oiscriminants

4 Results

6 Conclusion


Our Calorimeters

Pushing Particles through the Calorimeter

- 1. Use Pythia 8 to generate both signal and background events (Turn on ISR, FSR and MI).
- Deposit particle energy according to their type and momenta. (We simulate transverse showers for photons - the pattern on the right corresponds to Molière radius in Pb)
- 3. Recover massless four-vectors from (η, ϕ, E) of each cell in both calorimeters.
- 4. Find jets in the union of *all* four vectors with Anti- k_T , $\Delta R = 0.4$, $p_T > 50$ GeV.

Energy deposition pattern for photons in the EM calorimeter.

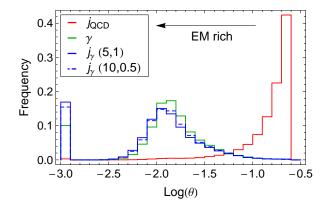
Outline

1 Model

2 Analysis

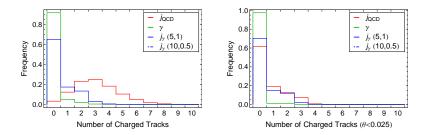
Oiscriminants

4 Results


6 Conclusion

These discriminants will be used in a multivariate analysis (TMVA) to separate all three populations:

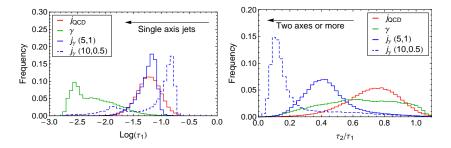
- Conventional
 - Fraction of Hadronic Energy in the Jet
 - Number of Charged Tracks
- N-subjettiness
- More Substructure
 - Energy-Energy Correlation
 - Subjet Spread
 - Leading subjet p_T


Fraction of Hadronic Energy in the Jet

Measures the fraction of hadronic energy in a jet, $\theta = E_{had}/E_{total}$

Number of Charged Tracks

- ► Counts the number of charged tracks with p_T > 2 GeV associated with the jet.
- We determine if a track is associated with a jet by including its softened four-vector with all the calorimeter four-vectors.

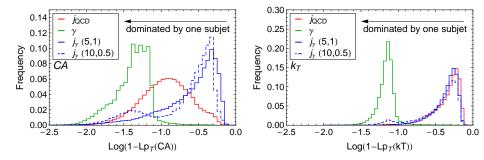

N-subjettiness

▶ Take a jet. Find *N* subjets. This defines *N* axes.

Form a sum:

$$\tau_{N} = \frac{1}{d_0} \sum_{k} p_{T,k} \min \left\{ \Delta R_{1,k}, \dots, \Delta R_{N,k} \right\}$$

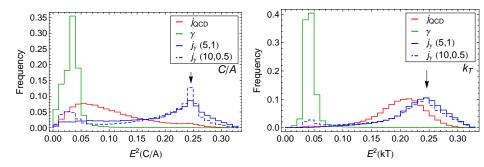
where k runs over all the constituents of a jet and $\Delta R_{i,k}$ is the angular distance between k-th constituent and the *i*-th subjet.


More Substructure – Grooming

- Take all the constituents of a jet.
- Find N subjets with a particular jet algorithm $(k_T, C/A)$.
- If you are performing a sum, sum only over some number n ≤ N of the highest p_T subjets (effectively filtering)
- (N, n) = (5, 3) works well for our photon-jets.
- ▶ Each variable therefore has the form *var*(*N*, *n*, algorithm).

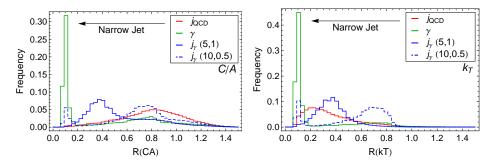
Leading Subjet Transverse Momentum

$$Lp_T = rac{p_T ext{ of the hardest subjet}}{p_T ext{ of the entire jet}}$$


Since QCD is characterized by soft radiation we expect the leading subjet will contain most of the p_T of the jet.

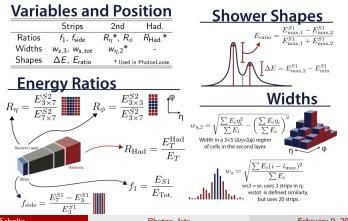
Energy-Energy Correlation

$$\sum E^2 = \sum_{i < j} E_i E_j / E_{total}^2$$


Relates to the variance of energy distribution amongst the subjets.

Subjet Spread

$$\sum R_{ij} = \sum_{i < j} \sqrt{\Delta \phi_{i,j}^2 + \Delta \eta_{i,j}^2}$$


Measures the spread of subjets within the jet.

ATLAS photon variables

 e/γ performance group: ATL-COM-PHYS-2013-600

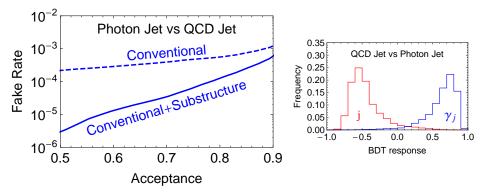
Graphical illustration

J. Scholtz

Outline

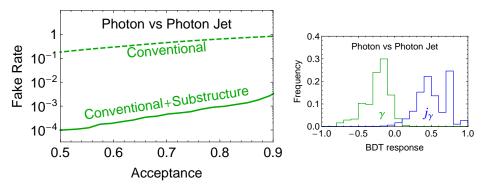
1 Model

2 Analysis


Oiscriminants

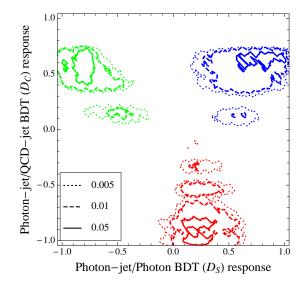
4 Results

6 Conclusion


Separating Photon-Jets and QCD-Jets

We train a BDT to separate photon-jets from QCD-jets

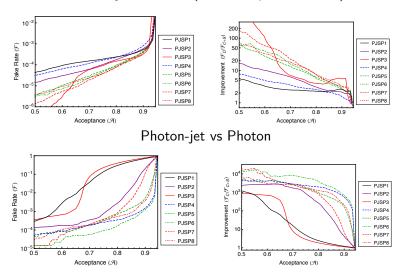
Separating Photon-Jets and Photons


We train another BDT to separate Photon-Jets from Photons

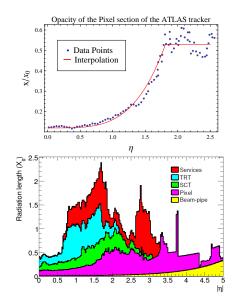

Separating Photons, Photon-Jets and QCD

- We use two BDTs to extract as much information as possible.
- Split QCD-jets away with only Conventional variables.
- Split Photons from photon-jets with just Substructure.

 QCD-jets photons photon-jets.


Conclusion

- Detecting Photon-Jets is not just about resolution it is about looking for them as well.
- ▶ We could mis-indentifying photon-jet as jets or photons.
- ▶ We could be missing photon-jets by throwing them away.
- Now, we have the tools to separate all three populations a significant amount of separation comes from substructure of these jets.
- ▶ This analysis is possible because we treat all objects on equal footing.


BACKUP SLIDES

More study points

Photon-jet vs QCD, (Our example is **PJSP6**)

Conversions

