

Reliability and fault-tolerance strategy in CADS linac and beam commissioning of CADS injector-I

4th Workshop on ADS and Thorium

University of Huddersfield, UK Aug.31th ~ Sept.2nd 2016

Cai MENG Institute of High Energy Physics, CAS, Beijing

Outline

- Introduction: CADS linac
- Linac design
- Beam loss prediction
 - Errors analysis
 - Mismatch study
- Compensation-rematch of major element failures
 - Method study
 - Procedures discussion
- Beam commissioning of CADS injector-I
- Summary

1. Introduction: C-ADS

The C-ADS (China Accelerator-Driven Subcritical System) project is a strategic plan to solve the nuclear waste and resource problems for nuclear energy in China.

- **CW proton** linac
- Superconducting acceleration structures except the RFQs
- HWR / Spoke / Elliptical cavity

> Reliability

- Robust design: robust <u>beam dynamics && all hardware</u> <u>systems</u> design
 Injector II
- Redundancy: tolerate failures
 30% for compensation

➢ Repair ability

Injector I

RFO

325.0MHz

RFO

62.5MHz

ECR LEBT

35 keV

35 keV

2. Linac design: rules for beam dynamics

- ► Keep period phase advance at zero-current σ_0 < 90 ° in all planes to avoid structure and space charge driven resonances: envelope instability or 4th order resonances;
- > Keep "smooth" phase advance and provide good matching between sections in all planes to minimise emittance growth: balance E_{acc} and phase advance
- ► Keep $\sigma_L \approx 1.25 \sigma_T$ to stay away from the dangerous parametric resonance $\sigma_T = \sigma_L/2$ and avoid emittance exchange between transverse and longitudinal planes via space charge;
- Keep tune depression >0.5 to avoid SCdriven resonances & instabilities
- Low enough synchronous phases to get large longitudinal acceptance

2. Linac design: Accelerating structure

2. Linac design: Beam dynamics simulation

3. Beam loss prediction: Beam loss mechanism

- Fortunately, Proton
- Emittance growth
 - Non-linear space charge
 - Resonances
 - Anisotropy
 - Instability
 - Mismatch
 - Initial density profile mismatch
 - ...
- Random errors
- Beam outside bucket (longitudinal acceptance)

3. Beam loss prediction: Errors analysis (1)

- Error analysis
 - Misalignment
 - All elements
 - Residual orbit && Correction
 - Cavity field & asymmetry (spoke cavity)

3. Beam loss prediction: Errors analysis (2)

3. Beam loss prediction: Errors analysis (3)

3. Beam loss prediction: Mismatch study

3. Beam loss prediction: Mismatch study

- Global compensation-rematch
 - Retuning and rephrasing of all following elements, a few minutes [1] (SNS)
 - Lattice update every time
 - Little redundancy, save cost
- Local compensation-rematch
 - Independence and locality
 - Retuning and rephrasing of neighbouring elements
 - 30 % accelerating gradient redundancy, ~70% power supply margin [2]

[1] Sang-ho Kim, MO103, Proceedings of LINAC08, Victoria[2] F. Bouly, et al., MOPP103, Proceedings of LINAC2014, Geneva

- Larger period phase advance means more difficult to rematch
- ➢ Fewer cavities in each period
- means more difficult to compensation-rematch

Cost!

Low energy section is difficult to compensation-rematch

- For spoke021 section and the beginning periods of spoke040 section, if two neighbouring cavities fault, local compensation-rematch method is not well effective, big emittance growth;
- For high energy section, even two neighbouring cavities fault, local compensation-rematch method is effective

ADS proton linac

> Several scenarios studied with multiple cavity failures in different section

The fault recovery scheme is a feasible everywhere in the CADS main linac to compensation-rematch for the loss of a single cavity or even of two neighbouring cavities in high energy section

- > Reverse first cavity's synchronous phase to positive value, to help match in transverse plane
- > Lower second cavity's synchronous phase to keep the longitudinal acceptance
- SC-Solenoid failures in spoke040 section
 - Just rematch with neighbouring solenoids, no need cavity reverse phase
- Elliptical section with quadrupoles
 - Change FDF to FD structure, rematch is easer, but need dual polarity current supply for magnet

2. A failure is detected anywhere

3. The failure is localized in injector and can not recover in few seconds (*diagnostic*)

4. Beam is recovered

- There are two methods to get the compensation-rematch results
 - Table lookup method: Setting-points determined in advance, then save into database, if detected the failed index signal, find the right setting-points
 - Simple, stabilization, controllable
 - Need a lot of works in advance for simulation and database establishment (should avoid human error)
 - Hardware compensation and rematch: using FPGA to calculated online
 @ XUE Zhou
 - Arithmetic computing speed is higher, as an integrated circuit device consisting of logic gates, an FPGA is able to realize parallel calculating and synchronous processing.
 - Instantaneous compensation and rematch is easier. It is an easier way to connect with the low level RF system and other types of hardware facilities etc.
 - Good portability and repeatability, no need a lot of calculation in advance.
 - Errors between models in FPGA and dynamic simulation
 - Uncontrollable, need more consideration and judge on the results

Take injector-I as an example:

It takes 9.2s to find the best result under 20MHz with hardware method. However the system clock is 200MHz, it needs continuous optimization to reduce the whole time.

Twiss parameters	nominal	After compensation and rematch	Mismatch Factor	
Beta-x	1.9548	1.9245	2 700/	
Alpha-x	0.5476	0.4683	3.72%	
Beta-y	1.9856	1.9687	2.0.40/	
Alpha-y	0.5599	0.4787	5.94%	
Beta-z	1.2822	1.3623	2.000/	
Alpha-z	-0.3446	-0.3181	5.90%	

	Current	α	β	$\mathcal{E}_{n,r}$
	mA		mm/mrad	π mm.mrad
RFQ entrance matched beam	10	2.41	0.0771	≤ 0.2
Measured beam	11.5	2.18	0.0774	0.14

ADS proton linac

V_n

ADS proton linac

- CM1 commissioning
 - ECRIS+LEBT+RFO+MEBT1+CM1 (7 spoke012/7 cold BPM/ 7 solenoid)+Beam dump line

Beam duty factor: 2‰ (2Hz/1ms)

- CM 1 output energy with 7 cavities : Eout=6MeV
- CM1 transmission: 100%
- RFQ+CM1 transmission: 88.4%
- Output current: 10.6mA

ADS proton linac

ECRIS+LEBT+RFQ+MEBT1+CM1+CM2+Beam dump line

5Hz/20 us

6. Summary

- CADS accelerator lattice have been presented with serious design
- Beam loss control have been discussed, including errors analysis and mismatch study
- Accelerator reliability have been discussed: study the compensation—rematch method of major element failures; give a preliminary processing of compensation; present table lookup method and hardware compensation and rematch method;
- Beam commissioning of CADS injector-I have been proposed, the RFQ duty factor with beam reached 90%. Very short beam have been commissioned to 10.67 MeV@ 10.6 mA.

