

Studies of the PSI Injector II high current cyclotron

2nd September 2016

Anna M. Kolano

Prof Roger Barlow (University of Huddersfield) Dr Andreas Adelmann (PSI) Dr Christian Baumgarten (PSI)

In this talk ...

The big picture

- Injector II
- Approach
- Models
- Physical collimator model
- Validation
- Intensity limits
- Summary

- Delivers 2 mA CW 1.3 MW proton beam
- \succ Chain of accelerators: 870 keV \rightarrow 72 MeV \rightarrow 590 MeV
- Planned upgrade to 3 mA will involve both accelerators

In this talk ...

The big picture

- Injector II
- Approach
- Models
- Physical collimator model
- Validation
- Intensity limits
- Summary

Neutron Spallation

Source SINQ

- Injector II
- Approach
- Models
- Physical collimator model
- Validation
- Intensity limits
- Summary

- 3D beam dynamics model of Injector II with space charge
- > What are the true intensity limits of Injector II?
- > To understand the machine after the upgrade
- Can an Injector II-type machine be used for future projects ?

Injector II

 \succ Hill field of 2 T

> 4 separate sector isochronous cyclotron

➤ 72 MeV in 83 turns in the production mode

➤ Accelerator Frequency 50.63 MHz

with strong radial-longitudinal coupling

RIZ1

right

The big picture

Injector II

- Approach
- Models
- Physical collimator model
- Validation
- Intensity limits
- Summary

Injector II

The big picture

Injector II

- Approach
- Models
- Physical collimator model
- Validation
- Intensity limits
- Summary

Courtesy: Richard Kan, PSI

Injector II

The big picture

Injector II

- Approach
- Models
- Physical collimator model
- Validation
- Intensity limits
- Summary

Injector II

Approach

Models

- Physical collimator model
- Validation
- Intensity limits
- Summary

The Goal: minimize halo at the extraction \rightarrow minimise losses in HIPA

OPAL

(Object Oriented Particle Accelerator Library)

- C++ framework for general particle accelerator simulations
- Open source
- 3D Space charge
- Massively parallel
- Particle-matter interaction
- Multi-objective optimisation.

>> OPAL

Initial conditions (matched distribution* linear space-charge model)

- > Accelerated bunch for 0.5 10 mA (non-linear model)
- > We consider 2 configurations: Production and Upgraded

*C. Baumgarten, "A Symplectic Method to Generate Multi- variate Normal Distributions", arXiv:1205.3601v.

** C. Baumgarten, "Transverse-Longitudinal coupling by Space charge in Cyclotrons", Phys. Rev. ST Accel. Beams 14, 114201, 2011.

Models of collimation

- Injector II
- Approach

Models

- Physical collimator model
- Validation
- Intensity limits
- Summary

- > 3 models under 2 configurations: **Production** and Upgraded
- Continuous 4 sigma cut
- 6-turn 4 sigma cut
- Physical Collimator
- ➤ Radial data comparable accross all models

University of HUDDERSFIELD

International Institut for Accelerator Applica

Models of collimation

- The big picture
- Injector II
- Approach

Models

- Physical collimator model
- Validation
- Intensity limits
- Summary

- > 3 models under 2 configurations: Production and **Upgraded**
- Continuous 4 sigma cut
- 6-turn 4 sigma cut
- Physical Collimator
- ➤ Radial data comparable accross all models

Configurations of Injector II

The big picture

- Injector II
- Approach

Models

- Physical collimator model
- Validation
- Intensity limits
- Summary

10²

10

0.04

0.04

X (m)

- The big picture
- Injector II
- Approach
- Models

Physical collimator model

- Validation
- Intensity limits
- Summary

- Injector II
- Approach
- Models

Physical collimator model

- Validation
- Intensity limits
- Summary

Last turn

6.9

0.4

0.6

0.8

Normalized denity (a.u)

1.2

1

Ê....

0.02

0

-0.02

-0.04

0

- The big picture
- Injector II
- Approach
- Models
- Physical collimator model
- Validation
- Intensity limits
- Summary

- \succ Long longitudinal tail due to mismatch and/or misplaced collimators
- \succ Eventually couples to the radial plane
- \succ We can tag last step halo and track it back to its origins
- \succ Successfully removed with KIP4 collimator

University of

HUDDERSFIELD

International Institut for Accelerator Applicat

Measurements: radial profile

The big picture

Injector II

Approach

Models

Physical collimator model

Validation

Intensity limits

Summary

> Orbit pattern changes with intensity in Injector II

> KIP2 collimator cuts away large parts of the beam changing the betatron oscillations

Trim coils are also used to force pattern that keeps the last valley in the same place

> Off-centered injection

 $ightarrow v_r$ is kept at 1.3 over the last few turns

Optimizing python script to reproduce in simulations:

Parameters	
Objectives	Design Variables
Fixed peak position at extraction	Voltage offset
Min ∆ peaks	Radius
~2	~2

University o

HUDDERSFIELD

colorator An

Injector II

Approach

Models

Physical collimator model

Validation

Intensity limits

Summary

- Injector II
- Approach
- Models
- Physical collimator model

Validation

- Intensity limits
- Summary

Run the same initial conditions with full space charge

Validation

- The big picture
- Injector II
- Approach
- Models
- Physical collimator model

Validation

- Intensity limits
- Summary

- > Optimisation of initial conditions (r, pr, azimuth etc) using GA based optPilot
- > Ensure correct Injector II parameters : Turn number , Energy, Injection/Extraction radius, radial turn pattern, current on collimators and their positions, cyclotron and RF frequency
- ➢ Benchmark with probe measurements: extracted current, RIE1 probe for radial intensity pattern, RIZ1 beamsize

Intensity limits of Injector II

The big picture

- Injector II
- Approach
- Models
- Physical collimator model
- Validation

Intensity limits

Summary

> Theoretical limit says **approx 2 mA*** (we already know **2.7 mA** was extracted) \rightarrow this strong transverse-longitudinal coupling combined with space charge sets higher limits

> Following up on Joho's scaling law^{**} $I_{max} \propto V^3$ also for beamsize, with slightly better fit at power of 4, that is particularly good at higher intensities

*R. Baartman. Space charge limit in separated turn cyclotrons. In *Proc. 21st Int. Conf. on Cyclotrons and their Applications*, Vancouver, Canada, 2013 **W. Joho, in *Proc. 9th Int. Conf. on Cyclotrons and their Applications*, Caen, 1981, p. 337.

Intensity limits of Injector II

The big picture

- Injector II
- Approach
- Models
- Physical collimator model
- Validation

Intensity limits

Summary

> Theoretical limit says **approx 2 mA*** (we already know **2.7 mA** was extracted) \rightarrow this strong transverse-longitudinal coupling combined with space charge sets higher limits

- > Following up on Joho's scaling law^{**} $I_{max} \propto V^3$ also for beamsize, with slightly better fit at power of 4, that is particularly good at higher intensities
- > Our models/fits predict **new 3mA limit** with existing configuration
- ➤ After the upgrade even up to 5mA could be possible

*R. Baartman. Space charge limit in separated turn cyclotrons. In *Proc. 21st Int. Conf. on Cyclotrons and their Applications*, Vancouver, Canada, 2013 **W. Joho, in *Proc. 9th Int. Conf. on Cyclotrons and their Applications*, Caen, 1981, p. 337.

Summary

HUDDERSFIELD International Institute for Accelerator Applications

University of

NGAC DT

Engineering and Physical Sciences Research Council

PAUL SCHERRER INSTITUT

Currents higher than 2 mA should be achievable
Thanks to space charge and tuning of collimator positions
New RF cavities will make it even higher

I would like to express my sincere gratitude to Prof Roger Barlow and Dr Andreas Adelmann for their support, guidance and expertise during my PhD

- Is the motivation of improving the RF to get higher intensities

- at PSI the maximum attainable current indeed scales with the third power of the turn number

- maximum energy gain per turn is of utmost importance in this type of high intensity cyclotron

- with constant losses at the extraction electrode the maximum attainable current scales as:

I max \propto turn# -3

Loss \propto turn# ³

Ref: W. Joho, in Proc. 9th Int. Conf. on Cyclotrons and their Applications (Caen, 1981), p. 337.