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Basics:

- Lorentz-Force, Maxwell’s Equations

- Phenomenology of Special relativity, formulae for relativistic beams

- simple examples of E-fields and B-fields, multipole expansion of B-fields

Linear Optics:
- Hamiltonian formalism=> derivative of Hill’s equation from Hamiltonian
Hamiltonian in different Coordinate Systems, weak focusing

- linear optics: motion of single particle in a lattice, phase space plots
trajectory, closed orbit, dispersion, weak focusing
- strong focusing, tune, chromaticity
- linear Imperfections, down-feed, coupling

- “Ataste” of non-linear dynamics

Liouville’s Theorem:
- Definition of emittance

emittance preservation in conservative systems
- filamentation due to non-linearities

Phenomenology of Collective Effects:

- Space Charge
- Touschek and Intrabeam Scattering
- Wakefields

H.Schmickler, CERN

Slides partially or fully taken
the lecturers in Budapest:

S. Sheehy
W. Herr
B. Holzer

G. Franchetti
A. Wolski
R. Tomas
F. Tecker
V. Kain (Erice 2017)

16 hours of compact lectures summarized in 2 hours.

Only possible by leaving out most of the mathematics and
by explaining the concepts behind.

T
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m Relativity: historical background

Assurmio » frama at rest (5) and ancther frame (5') moving i
~direction with velocity o, 0,0)

vey

Galilei transformation

Galilei transformation between
observers in the rest frame and
in a moving frame

describes well classical
mechanics:

- Severe problems with

electrodynamics Galilei transfarmations relate observations in two frames maving relative
(end 19t century) to cach other (here with comstant wolacity ©, in x-direction).

Only the position is changing with time
H.Schmickler, CERN 4
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Definition of relativistic factors

Transformation for constant velocity ¢ along x-axis

Time is now also transformed
Note: for + < ¢ it reduces to a Galilei transformation !

It seems, in the beginning Lorentz did not believe in this description...but Einstein did....

H.Schmickler, CERN 5

M More consequences

Conservation of transverse momentum
-> A moving object in its frame S’ has a mass m’ =™/,

Mo

1 2,1
J_ = mo+ Smov (c_Z) (approximation for small v)
¢

Orm= ymy=

Multiplied by c?:

1
mec? = mgc? +§m0v2 = maEan

Interpretation:

- Total energy E is E=m-c?

- For small velocities the total energy is the sum of the kinetic energy plus the rest energy
- Particle at rest has rest energy E, = mg « c?

- Always true (Einstein) E = m - ¢? = ym, - ¢?

H.Schmickler, CERN 7

@ Proper Length and Proper Time
TheCE desctasber Sl

Time and distances are relative :
™ r is a fundamental time: proper time
™ The time measured by an observer in the frame of the event

* From frames moving relative to it, time appears longer

* { is a fundamental length: proper length £
™ The length measured by an observer in the frame of the event

* From frames moving relative to it, it appears shorter

Accelerator related examples:

muon lifetime: in its restframe the muon decays in about 2 - 107 s
we measure a lifetime y times longer

Relativistic electron with 1 GeV/c momentum (f = 0.99999987):
bunchlength in lab-frame: o, -> in rest frame of electron: yo,
length of an object (magnet, distance between magnets)
lab frame: L = L/, in frame of electron

H.Schmickler, CERN 6

m Relativistic momentum  p = mv = ymyv = ymyfc

From page before (squared):

1 1-p2+p%
B2 = mict = yPmylct = (Zpmoiet= (S ymozet = (14 y2p2)mo?ct

Or by introducing new units [E] = eV ; [p] =eV/c ; [m] = eV/c?

1

EZ

0e9

08

Due to the small rest mass i |
electrons reach already b
the speed of light with L

o4

relatively low kinetic
energy, but protons only in
the GeV range

034
02

o1

86

H.Schmickler, CERN 8
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For those, who really want to calculate...

Teomsmtmernet  Collect the formulae: useful ki ic relations
cp T E ¥
3 — i s el Y A
Jan |V T wgE |V
cp =
By =
=
- = e/ EyB
Kinematic relations - logarithmic derivatives
a8 4 4L
7 T
di _ 43
r:a r:a
dp _
D
ar _ dy
T (1 -
dE _ &
E .
dy dp _ di dy
3 P £ -
H.Schmickler, CERN 9

But: for specific cases we also use electrostatic elements

H.Schmickler, CERN 11

Electromagnetic Fields and forces onto charged particles

«do

* Described by Maxwell’s equations and by the Lorentz-force

¢ Lots of mathematics, we will only “look” at the equations

¢ Only electric fields can transfer momentum to charged particles
- EM cavities for acceleration = F. Tecker

* Magnetic fields are used to bend or focus the trajectory of charged particles
-> construction of different types of accelerator magnets

* Also electrostatic forces can bend and focus beams; but since the forces are
small we often neglect this part

Larentzforce F=q s ‘f‘}(& ixi)

wtegral torm Dtesertia hatrm
J|"_*: di ,r" v-E :.’. typical velociy in high energy machines: veg=3tlot s
J{af.,._.- 0 v.H=0 -
] Y > o
J|I[r ar= -0 OxE=- HalT — Fagedall o
- p .,,l_;.,.'_’l‘. v
equiulvnt o fickd  F
H.Schmickler, CERN 10
We need real magnets in an accelerator...not any bn dn
arbitrary shapes of magnetic fields, but nicely - s
classified field types by making reference to a =
multipole expansion of magnetic fields: T =
In the usual notation; bbby o =
n-1 -
: s X+iy h ; .
B +iB =B, 2‘(!),r +ia,) —
=l Rr-'.’ e
A= A=
bn are “normal multipole coefficients” (LEFT) - / 2, N
and an are "skew multipole coefficients” (RIGHT) | = A |E 4N
‘ref’ means some reference value o A -
n=1, dipole field =
n=2, quadrupole field n=3
n=3, sextupole field NS
;Ill ) (] ||l|I

Images: A. Wolski, hitps://cds.cern.chirecord/1333874 A 4
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Images: Ted Wilzon, JAI Course 2012 20 Image: Danfysik

T it akesd Use Lorentz transformation of /7 and write for components:

Back to relativity: transformation of fields into a moving frame

Lecture of
W. Herr

E. =E, B =8,
E,=1(Ey =v-B) B,=(B,+:

El =+(E. +v-B,) B.=+(B.

Example Coulomb field: (a charge moving with constant speed)

1=1 FE=s

" In rest frame purely electrostatic forces
_“- In moving frame - transformed and 7 appears

H.Schmickler, CERN 14

cm Transverse Beam Dynamics

Wl o Aty icienll

But:

??? high intensity beam described in 6D phase space??? No...

Starting point:

- Single particle in single magnetic element

- complete decoupling of long., hor.& ver. motion
- particle with nominal momentum

My first accelerator:

- Single particle in many magnetic elements
- circular structure: synchrotron

- twiss parameters, orbit, tune...

Off-momentum particle:

- Dispersion

- Momentum compaction

- Chromaticity...a taste of non-linearities

Finally a beam of many particles (not too many!)
- emittance

- Liouville’s theorem

- adiabatic damping and radiation damping

H.Schmickler, CERN

| ]
m Linear Optics — Hamiltonian (1/3)

A little reminder of classical mechanics:

- Take a set of “canonical conjugate variables” (g, p in a single one dimensional case)
- qis called the generalized coordinate and p the generalized momentum

- Construct a function H, which satisfies the dynamical equations of the system:

9q _ . _0H g _,__oH
a1 M TP T

- H “=the Hamiltonian “ of the system is a constant of motion
(= H does not explicitly depend on t) .
- The Hamiltonian of a system is the total energy of the system: H=T +V
(sum of potential and kinetic energy)
. 2 dif 2 aff
H = ¥ 5%+Y 5 p
Proof: =19 P
o dff i L dlf aif
le dx; dpy & ’z‘ ap; ( dhy; ) =0

Used x instead of g just to test your attention
H.Schmickler, CERN 16
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Linear Optics — Hamiltonian (2/3)

This leads immediately to the question:
What are canonically conjugate variables?
* Complete answer: Lecture of W.Herr later this course

Short answer:

Several combinations are possible, the most relevant for us are

- X (space) and p (momentum)

- E (energy) and t (time).

We can learn most of the physics, when we construct quantities from the
canonical variables, which are constants of motion (energy, action...)

* Hint to a more complete answer:

se

- Describe the particle motion by a Lagrange function of i inates and ized velocities and

time.
- define an action variable and assume that nature is made such that the action between any two points of
particle motion is stationary

- This s fulfilled for Lagrange functions satisfying the Euler-Lagrange equation

- And this leads finally to the definition of generalized momenta instead of generalized velocities, the definition

of the Hamiltonian function and then to the two equations of motion as shown on the last slide.

H.Schmickler, CERN

Hamiltonian formalism to obtain the equations of motion:

5x—5c—aH-por =mx = mv
5t _ap_m p= B
ép _ . _ OH _

ot P~ ax'kx

We are used to start with the force equation:
F =ma =mx =-kx
With the well known sinusoidal solution for x(t).

kg miny

VT

- 7,
Instead we look at the trajectory of the system in a phase space.
In this simple case the Hamiltonian itself is the equation of the ellipse.

H.Schmickler, CERN

Recall: what is the “action” variable; what is phase space

Phase Space

tz2
Define action ”S":=f pdq
ty
“Stationary” action principle:= Nature chooses path from t, to t, such that the
action integral is @ minimum

Warning: We often use the term phase space for the 6N dimensional space defined
by x, X’ (space, angle), but this the “trace space” of the particles.
At constant energy phase space and trace space have similar physical interpretation

H.Schmickler, CERN 18

|
m A further look at phase-space plots

[

VT

kg miny

Increasing t

The particle follows a in phase space a trajectory, which has an elliptic shape.
- Inthe example, the free parameter along the trajectory is time ( we are used to express the space-
coordinate and momentum as a function of time)
This is fine for a linear one-dimensional pendulum, but it is not an adequate description for transverse
particle motion in a circular accelerator
> we will choose soon “s”, the path length along the particle trajectory as free parameter
Any linear motion of the particle between two points in phase space can be written as a matrix

: a b
transformation:  (%)(s)= (c d) (Z)(s0) )
In matrix annotation we define an action “)” as product J:= E(:,)(s) (:,)(50).
- Jis a motion invariant and describes an ellipse in phase space. The area of the ellipse is 2r]

Later we will define the emittance of a beam as the average action variable of all particles...

but for the moment we stick to single particles ... and we follow them through magnetic elements.

8/31/2017



Particle Motion through accelerator components

e CP Moscloier Bl
Linear treatment: matrix multiplication  (%)(s)= (¢ b (Z)(s0)
: 5 ¢ a)@so
More general treatment: application of amap:  (%)(s)=M (%) (so)

* the map can be any function of x and x’, but must not depend on the input parameters x (so) and x’(s,);
* the map must be symplectic (> more details: again W. Herr this course)
(by the way: every matrix is a map, but not every map is a matrix)

* Following a particle through various elements is equivalent to multiplying the maps.

First (simple) case:
A drift space (one dimension onlty) of length L, staring at positian s and

ending ats s L
{EeL)x'(ssL)
CEEAC
: 4
s sl
The simpiest description (10, using « '] is (should b in 30 of courss):
(g o) (o) (9)

H.Schmickler, CERN 21

Back to the Hamiltonian for a moment:

So far we have been switching from time-dependent variables to s-dependent variables without
paying attention to it:

In a linear 1 D motion this is a equivalent since s= vt

But if we want to describe motion transverse to a curved reference line,

we must use “s” as independent variable. At every moment we have perpendicular to the tangent
vector of the particle trajectory a transverse Cartesian coordinate system.

Hamiltonian for a (ultra relativistic, i.e. y = 1. g = 1) particle in an
electro-magnetic field is given by (any textbook on Electrodynamics):

HZpn=c \.'llr?— AT, NP + mge? + et(Tr) {ugly...)

where A( .1}, O+ 1) are the vector and scalar potentials (i.e. the V)

Using canonical variables (2D"') and the design path length : as
independent variable (bending field 5, in y-plane) and no electric fields:

due to t — 3 i
Aixy)
2 B

where p = - — m-c- total momentum, & = (p— p,)/ py is relative
momentum deviation and A,(x. v) (normalized) longitudinal (along +)
component of the vector potential.

Only transverse fields now, skipping several steps (see e.g. S. Sheehy, CAS Budapest 2016)..

H.Schmickler, CERN 23

§.

Where are we now?

- we describe every element in the trajectory of a particle with the corresponding Hamiltonian.

- we describe the particle motion through an element by a matrix (map) multiplication onto its phase-
space vector.

- we generate more complex accelerator configurations by multiplying the maps of the induvial
elements.

- we have changed the coordinate system and describe now the trajectory of a particle as a function of
“s” and not of “t”.

- But: we are still treating single particles in a single passage through an accelerator component.

What comes next?

- We show that Hill's equations come naturally out of the Hamiltonian formalism
- We look at transverse focusing...in particular a FODO lattice
- We look again and again at phase space diagrams.

H.Schmickler, CERN 24
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A first application - the simplest possible:
Keeping only the lower orders (focusing) and 6 = 0 we have:

_EBYE R ki,

2 20°(s) 2

H

Putting it into Hamilton’s equations (for .x, ditto for v):

OH _ dp, iH _ dx _

ax — ds ap,  ds P
it follows immediately:
d*x I &2y
ds? g kks)y x = : (s)y = (
ds? * (;:(.\']3 J'\N\}) X 0 i + ky(s)y i

Hill'’s equations are a direct consequence of Hamiltonian treatment
of EM fields to lower orders

_— P+l
dipole: H=-— T
n+n
uadrupole: H =
ekt AT+

This means that we can construct a focusing circular accelerator based only on dipoles...
in particular when p is small.

This has been done in the 1950’s and it was called “ a weak focusing synchrotron”
For this evening (with a cold beer):

How about the vertical plane? There are no dipoles. Or why do the particles not fall down?

«do

Hamiltonians of some machine elements (3D)
In general for multipole n:

P+ pr
H, = L

Re [(k, + ik x + i)™ + g
I +n [ ’ : ] 201 + &)

We get for some important types (normal components &, only):

o -5 X 7t + pl
dipole: H:-—[+—,+%
P 202 21 +6) i
1 P! + f’: Such a field (force) ¥
. ST i . S ox TN we need for
quadrupole: H = 1.(,1.\ U+ TR fousing —
sextupole: H = Lky(x* — 307 L A
: = —kalx” — 3y
P 3 4 2(1 + )

H.Schmickler, CERN

|
m We need stronger focusing....quadrupoles

cos(4/|K[s) isin( IK]s
foc = r \/m \F

—\/Wsin(\Ms) cos(\/Ws)

1
f= m =1 9 ... focal length of the lens is much bigger than the length of the magnet
q

limes: J" — 0 while keeping k.‘" = const

Negative = focusing
H.Schmickler, CERN
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M detoc =

f= =>1
}dq

1 .
cosh /|K|I ——==sinh /|K|l
VKT s K
1/\K\sinh,l\K\l cosh \J[K|I

The negative sign in the Hamiltonian makes the same
quadrupole defocusing the other plane.

limes: J" — 0 while keeping k."' = const

Positive = defocusing

H.Schmickler, CERN

... focal length of the lens is much bigger than tie length of the magnet

00

Consider an alternating sequence of focussing (F) and defocussing (D)
quadrupoles separated by a drift (O)

sample trajectory

F D
_r.-‘f.f;ﬁ‘i‘:‘;‘:—-_- ﬂ-f__r:—:’:::lftj‘}f‘i; A
e

L
<ell lengih

The transfer matrix of the basic FODO cell reads

, : (e [ i
e 5 0 SO S
Cf Ao 1T)Af o 1) |_ L AL L
21:# 2 4t
H.Schmickler, CERN 30

In order to

Transfer Matrix in 6-D

calculate numbers one usually defines a FODO cell from the

middle of the first F-quadrupole up to the middle of the last F-quadrupole.

Hence the

resulting transfer matrix looks a little different:

M= My(2fo) - Mp(L) - Mo(—fo) - Mp(L) - My(2fo)

~35 7L+ 20) 0 0
ﬁgL—gh) 1-ﬁ; 0 0

0 0 1—:{7'__. —J{_’(L—2fo)

0 0 —25(L + 2fo) 1- 4=

0 0 0 0

0 0 0 0

H.Schmickler, CERN

o= 0O 0 0o O

j-|¢io o oo

ey

00
Let us consider the case L. =1m, fp= v2m. Take a particle
with initial coordinates at the start of a FODO cell:

r=1mm, p:=20, y=1mm py=0

Mow track the particle through 100 FODO cells by applying the
transfer matrix to the vector constructed from the
coordinates, and plot pr vs =, and py vs it

b oY DR
- —— . o
2 o D1 ' ( |
- — o 3 J
a8 L1} " - 3
.
1 05 [-] as 1 1 a8 oas 1
u | ¥ ]
H.Schmickler, CERN 32
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@ More details on the Illustrating Example

&
2 o
-
a5
& i |
ERNE R
x [mm]
0 —.54
—_
-2 —.15
H.Schmickler, CERN 33
o st il

Evolution of the Phase Space Ellipse in a FODO Cell

i ] ] i

S| 2| (2] == IR || | &

H.Schmickler, CERN

00

What happens if we repeat the exercise, but starting the
FODO cell at the center of the drift before the (horizontally)
defocusing quadrupole? Again, we plot ellipses, but this time,
they are tilted:

05
!
4 'n \
P 2 o .
-
08
A} 1
15 k 1.5 . .
A5 1 85 0 08 1 15 8 -1 08 0 05 1 15
X [mm] ¥ [mm}
H.Schmickler, CERN 34

§.

Our first synchrotron

The previous example of 100 consecutive FODO cells describes very well a regular
transport line or a linac (in which we have switched off the cavities).

If we add dipoles into the driftspaces, the situation for the transverse particle motion
does not change (neglecting the weak focusing part).

So actually with the previous description we also describe a very simple regular
synchrotron.

The phase space ellipse we can compute provided we know the total transfer map
(matrix) M

=5 ()G0) ()0 +€) =35 () so) Meot (5)(s0 )

The phase space plots will look qualitatively the same as in the previous case.

Definition: trajectory (single passage) or closed orbit (multiple passages):

Fix point of the transfer matrix...in our cases so far the “0” centre of all ellipses.

H.Schmickler, CERN 36
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@Courant — Snyder formalism / Twiss parameters

* Same beam dynamics

¢ Introduced in the late 50s by

The classical way to parametrize the evolution of the phase space
ellipse along the accelerator

Basic concept of this formalism:
1) Write the transfer matrix in this form (2 dimensional case):
M =1Icospu+S -Asinu
(1 0, _(0 1\ , (v «
"(0 1)' 8= (—1 0)’ be (a ﬁ)
2) M must be symplectic> By — a?=1

3) Four parameters: a(s); B(s); y(s)and u(s), with one interrelation (2)
- Three independent variables

4) Again, the preserved action variable J describes an ellipse in phase-space:
J = 3 (yx?+ 2axp + fp?)

H.Schmickler, CERN
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Example: Propagation of twiss parameters along s between two focusing quadrupoles

Wl o Aty icienll

(el el e e <)

And in Matrix-Annotation:

c? —2sC  S% )\ (B,
=|-CC' sC'+CS' -SS' || e
. Lc? st s? )\

a
4

8/31/2017

«do

Wowf e WL Ler asc 52 ) \n

£x2 + Dogrps + Bap2) Area = 2w,

B 2 28C §* | (5
a| =|-CcC' SC'+CS' -SS'|| e

0

The Phase Space Ellipse

slope = — 2=

slope = — 5=

H.Schmickler, CERN

1

saie
2 (aqg> A M4 M B

[ 51 Do waist & = 0
orift M = ((1) i)
o8 L e T
ASD_(ao ,30) 1 ( 0 [5’0) T<< 00 Bo | / |
‘ Starting from waist =0 ‘ ‘ Using: By — nd- 1 |

s 0 < 1/ 0
- e O( 00 9= (B

H.Schmickler, CERN

0

Interpretation of the Twiss parameters (1/2)

1) Horizontal and vertical beta function By, (s):

Proportional to the square of the projection of the phase space
ellipse onto the space coordinate
Focusing quadrupole = low beta values

Although the shape of phase space changes along s, the rotation of the particle on
the phase space ellipse projected onto the space co-ordinate looks like an harmonic
oscillation with variable amplitude: called BETATRON-Oscillation

x(s) = const - /B(s) - cos{u(s) + ¢}

H.Schmickler, CERN 40
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Interpretation of the Twiss parameters (2/2)

e CP Moscloier Bl
1dp a indicates the rate of change of B along s
2') a=— 2ds o zero at the extremes of beta (waist)
3) ©= J'SZ 1 ds Phase Advance: Indication how much a particle
: s1 B rotates in phase space when advancing in s

Of particular importance: Phase advance around a complete turn of a circular
accelerator, called the betatron tune Q (H,V) of this accelerator

Quy =ifc — ds

2170 By

H.Schmickler, CERN 41

Importance of betatron tunes

If we include vertical as well as horizontal motion, then we find
that resonances occur when the tunes satisfy:
Wiirg + mgin = £,

where i, my, and { are integers.

The order of the resonance is |m.| + |myl. Integer values of the betatron
tunes or other multiple integer
combination can lead to particle
losses (resonances)

o

The tunes can be measured (see
lecture of R.Jones) and are
corrected by changing the
strength of the quadrupoles.

; The couple (Q,;,Q, ) is called the
| working point of the accelerator.

L S N A R R A

143 Pl tume agram 15 Zisows smand LHE (3 working points
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[ ]
Slides on “off-momentum” particles in a synchrotron
Wl o Aty icienll
What happens: A particle with a
- Aith &0 momentum deviation § = L3N 0 gets
Aot N P
t bent less in a dipole.

* Inaweakly focusing synchrotron it would just
settle to another circular orbit with a bigger
diameter

* Inan alternate gradient synchrotron it is more
complicated: The focusing/defocusing is also
dependent on the momentum, so the resulting
orbit follows the optics of the accelerator.

We describe the dispersion as a function of s as D(s);
the resulting position of a particle is thus simply:

Sp
Xsp=Xo+ D(s) —
Sp 0 ( ) »
Typical values of D(s) are some meters, wit|

the orbit deviation becomes millimeters

TR T Lo -
- H.Schmickler, CERN 43

Measurement example

HERA Standard Orbit

gt el

This gives also an example of an

orbit measurement.
More on this: again R.Jones (BI)

4 Di . .
dedicated energy change of the stored beam HERA Dispersion Orbit

> closed orbit is moved to a LEmmEES e

e s o e 5t e Crbe v Gt

dispersions trajectory

9
¥o = D(s)*?p

iy I.lr! i“'l’li" Ay

Y- "'|||‘II"I'“!IUJU\Illlf"""'lll||||||I||IIlllllll\‘lj{‘ '||||I||||IIII||| 1y

8/31/2017
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‘ Momentum compaction factor ‘

If a particle is slightly shifted in momentum it
will have a different orbit and the orbit length is
different.

The “momentum compaction factor” is defined

as:
o = a, =P
¢ dp °"Ldp
/o P
]f;)x(_g) With p=e=in e
a. =- 5 igh i =
I k {)(S) 0 straight sections

we get:

Typical numbers: @, ~ 1073..107%; %7/, ~ 1073 > 4L/, ~ 1076...1077

= Much more on this in long. dynamics (F. Tecker).

o
Finally: a beam

Wl o Aty icienll

We focus on “bunched” beams, i.e. many (10 ) particles bunched
together longitudinally (much more on this in the RF classes).

From the generation of the beams the particles have transversally a
spread in their original position and momentum.

O st o [ERists s~ s [0

Facilities Council

Pepperpot Emittance Extraction

¥ (mrad)

\

¥ (mmi
Peppecpot mmage spets: hoe
Source: ISODAR (Isotope at rest experiment) postions (bie’ .fyw_ beam spots (red)

H.Schmickler, CERN
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Liouville’s Theorem (1/2)

1. All particle rotate in phase space with the same angular velocity (in the linear case)
2. All particle advance on their ellipse of constant action
3. All constant action ellipses transform the same way by advancing in

g
Physically, a symplectic transfer

Area A= |y x e map conserves phase space

volumes when the map is applied.

2 ' This is Liouville's theorem, and is a
o property of charged particles
""’ moving in electromagnetic fields, in
Area, A'=|ei= il the absence of radiation.

-> Since volumes in phase space are preserved, (1)-(3) means That the whole beam

phase space density distribution transforms the same way as the individual constant
action ellipses of individual particles.

H.Schmickler, CERN 49

@ Liouville’s Theorem (2/2)

We now define the emittance of a beam as the average action of all particles!

- Since the action | of a particle is constant and the phase space area A covered
by the action ellipse is A = 27J , we can represent the whole beam in phase
space by an ellipse with a surface = 2(J) *

- all equations for the propagation of the phase space ellipse apply equally
for the whole beam

!11'In case we talk about a single particle, the ellipse we draw is “empty” and any particle
moves from one point to another; if we consider a beam, the ellipse is full of particles!!!

% There are several different definitions of the emittance , also different
normalization factors. This depends on the accelerator type, but the above
definition describes best the physics.

* Another often used definition is called RMS emittance
& = const * (x®)(p?) — (xp)> or & = const * (x?){x'?) — (xx')?
attention: the first definition describes well the physics, the second describes
what we eventually can measure

H.Schmickler, CERN
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®
Remarks

1. We have already identified the action as a preserved
quantity in a conservative system & >
the emittance of a particle beam is preserved in a
conservative beam line.

2. The sentence above is often quoted as Liouville’s
theorem, but this is incorrect. Liouville’s theorem
describes the preservation of phase space volumes,
the preservation of the phase space of a beam is then
just results from the Hamiltonian description.

3.  We can identify the constant in the previous equation:

x(s) =+/e - B(s) - cos{u(s) + ¢}

H.Schmickler, CERN 51

[
Cm More on beam emittance

The reference momentum increases during acceleration
Py = Boyome = Py = B1y1mc (B,y relativistic parameters)
we can show: BoYo€o = B1 V161
So the transverse emittances scale with the product Sy

For this reason we define:

normalized emittance gy: = fye and we call € the geometric emittance

The “shrinking” of the transverse emittance during acceleration is called
“adiabatic damping” (only & = const * (x2)(x'2) — (xx')? scales with energy)

Other ways to influence the emittance (advanced subjects):
- make it bigger by error (injection errors....)
- make it smaller by cooling (stochastic cooling; electron-cooling....)

Not to be confused with:

Radiation damping = Reduction in emittance due to the emission of
photons as synchrotron radiation

H.Schmickler, CERN

8/31/2017

13



@Vhat do we normally measure from the phase-space ellipse?

* At agiven location in the
accelerator we can measure
the position of the particles,
normally it is difficult to
measure the angle...so we
measure the projection of
the phase space ellipse onto
the space dimension:
-called a profile monitor

Attention! The standard 2 D image of a
synchrotron light based beam image is
NOT a phase space measurement

- o= V2B +0/,

o
A first taste of non-linearities (2/6)

Wl o Aty icienll

* Due to the change in focusing strength of the quadrupoles with varying
momentum, particles have different betatron-tunes:
initi ependence of tune on momentum

or relative chromaticity § = <

Ap
P

Q
* Is this bad? : Yes, the working point gets a “working blob”
* We need to correct. How?
i) Inserting a magnetic element where we have dispersion (this separates in space
particles with lower and higher momenta
ii) Having there a “quadrupole”, for which the strength grows for larger distances
from the centre: a sextupole

Ip

H.Schmickler, CERN 55

@ A first taste of non-linearities (1/6)

* So far we have completely neglected the longitudinal plane
 Still, we will not couple the motion in the longitudinal and transverse plane

(advanced course), but we need to consider

clac” i — A
“off momentum particles” with a longitudinal momentum p—p # 0.
0

* We already defined the Dispersion function, which describes the change in orbit
* Now we look at what happens to the focusing in the quadrupoles:

P<Pp, P=P P >p,
~2 AQY
H.Schmickler, CERN 54

e
cm A first taste of non-linearities (3/6)

We will have a high price to pay for this chromaticity correction!
-> we have introduced the first non-linear element into our accelerator

The map M (no longer a matrix) of a single sextupole represents a “kick” in the
transverse momentum:

X X €T = T,
=M* 1
[X'l [X']so Pr ++ Dr— EL'Q Lx?

We choose a fixed value k,L = - 600 m?2 and we construct phase space
portraits after repeated application of the map.

We vary the phase advance per turn (fractional part of the tune) from

02 -2m to 0.5 27

H.Schmickler, CERN 56
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cm A first taste of non-linearities (4/6)

pr = 0202 x 2%

10'p,
a

Another useful example: Injection missteering

beam:

» The emittance is the average action of all particles in the

Example:

Septum

|_| [_T—-ﬁx:, kicker Mes-staarod

= npecled baam

U U

I =

- Injection oscillations = if beam is not injected on the closed orbit, beam

oscillates around closed orbit and

lly filaments (if not damped)

H.Schmickler, CERN 59

dipole perturbation
tune = integer

dipale perturbation
tune = haif-integer

A | } 1

quadrupale perturbation
tune = half-integer

H.Schmickler, CERN

sextupole perturbation
tune = third-integer

Steering error — linear machine

What will happen to particle distribution and hence emittance?

0.0015

0.0010

0.0005 Turn 1:

00000 Blue distribution:
|2 —0.0005 on axis injection —
x5 no error
“ =0,0010

-0.0015 H Red distribution:

* = injection on CO Injection with
0.0020H e < 2 gz

e horizontal injection

~gpazsH® * Injection emor |e error: mainly in x’

—" ]
~0.0038 6oz -0.002 -0.001 0.000 0.001 0.002 0.003

B
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Steering error — linear machine

+ What will happen to particle distribution and hence emittance?

b | [ - .
Turn 100

001 ez
aco1} acen
0054 L
e -ace
-2} -0.003
L0

sy oter o G e

|# = injection en €O

+ The beam will keep oscillating. The centroid will keep oscillating.

H.Schmickler, CERN

Steering error — linear machine

+ How does <J,> behave for steering error in linear machine?
+ And what about the rms definition?

14 — sl |
= rms emittance :
12 |
_10
5
g
E
£ 0B
E
"os How useful is <J,>7?
)
04 ...see steering error with
non-linear machine
0.2
9, I 200 400 600 800 1000
tum (\#)

Injection moment

H.Schmickler, CERN

Steering error — non-linear machine

*  What will happen to particle distribution and hence emittance?

200}

-n001}

a0
o -0.002)
R e T v L

* The beam is filamenting....

Turn 4 Turn 100 F:-F.am‘
o . ® & injectian error

H.Schmickler, CERN

s = injection cn €O |

Steering error — non-linear machine

+ Phase-space afteran even longer time

0003

o002

0.001

-0.001

=0.002

=0.003

—.o03 -0.002

-0.001 0.000 0.001 0.002 0.003
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Steering error — non-linear machine

+ How does <J,» behave for steering error in non-linear machine?

+ And what about the rms emittance

14
=  rms emittance
12
10
]
H
£ 08
£
- 06
v
i After filamentation: RMS
emittance = <J,>
0z
e 500 1000 1500 2000
turn (\#)
|
,_CDO___ Dipole Errors
error effect correction

change excitation current,

strength (k) |change in deflection
replace magnet

lateral shift |none
tilt additional vertical deflection |corrector dipole magnet

L LI IR IrTIT T LTI e LT

| e
WL b

[Trrrrr L
T T TR a LT
e

-
FYeTrrII: . LTI
AR
[T
AR
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‘m Linear Imperfections

* Up to now we have constructed an alternate —gradient focusing synchrotron
* We have a well chosen working point
* We have corrected chromaticity
e (We still cannot accelerate! > see F. Tecker (long. Dynamics)
* We assume:
- All magnetic elements have the calculated field strength and field quality
- All magnetic elements are in the right place and powered with the right polarity
* Reality tells us:
- Magnets have field errors, have other multipole components, have time varying
fields due to ripple in the connected power converter
- Magnets are wrongly mounted with horizontal and/or vertical offsets, rotations
or tilts
¢ These effects influence:
- the beta functions and phase advance around the ring (implicitly the tunes)
- the closed orbit
- the coupling between horizontal and vertical motion

* We need to diagnose and correct: Strong interaction between beam
measurements and corrections (see also R.Jones BDI talks)

H.Schmickler, CERN 66
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Note that F, = —kx and F, = ky making horizontal
dynamics totally decoupled from vertical.
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Quadrupole Errors 2/2

Error type effect on beam
strength Change in focusing,
“beta-beating”
Lateral shift Extra dipole kick

correction(s)
Change excitation current,
Repair/Replace magnet

Excitation of a corrector
dipole magnet

Excitation of a additional
“skewed quadrupoles (45°)

tilt Coupling of the beam
motion in the two planes

An offset quadrupole is seen as a centered
quadrupole plus a dipole.

Beta-beating (2/2)

.IL.IL ILJLJLJLJIL(JL)JlLJLJILJLJLJLJ[L

70 —
wf] | 1 B
so bl | : . '
ot L I b | | A
30 + .': | /1 I IiI I
2oH\ [\ /| 1/
10 ¢

B [m]

0 20 40 60 80 100 120 140 160
Longitudinal location [m]

[ functions change (;‘3—beating:é_i-" _ pert 5’0)

B [m]

Beta-beating (1/2)

Y A A A A

IIllIII]IIILIII

JLJLJLJ[LJ

Focusing quads
Dipoles
Defacusing quads

B

0

20 40 60 80 100 120
Longitudinal location [m]
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140 160

70

H.Schmickler, CERN

Any tilted quadrupole is
seen as a normal
quadrupole plus another
quadrupole tilted by 45°.
(skew quad)

Note that in a skew quad
Fe=kyand F, = kx
produce coupling
between the x and y
planes

Additional skew quads in

an accelerator are used
to compensate coupling

72
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correction, beta-beating Repair/Replace magnet

Coupling control is most important in synchrotron light
sources, since small vertical emittance (yielding high
T P Ao Bl brightness of the photon beams) is predominantly achieved by
decoupling the x and y planes.
| ' iCr)t.lr'tf.“:,\f Andrea Fra nr.hli
— —— T e e S
100
- Q
X 10 S
— @
o w
= =
2 E
4]
g 0.1 o
a4
s o
= 001 =]
= o
s 0.001 %
. - o
0.0001 FORST S [ S T S NN WA SHN S I SN ST S R L Y
1984 1992 2000 2008 2016
year
[ ]
Last not least: Sextupole errors (2/2)
Wl o Aty icienll
Error type effect on beam correction(s)
strength Change in chromaticity Change excitation current,

Last not least: Sextupole errors (1/2)

1
Fo=35K(x* =) . F=—Kxy

H.Schmickler, CERN

74

Lateral shift Extra quadrupole and skew | Compensation with
quadrupole, beat-beating, quadrupoles and skew
tune change, coupling quadrupoles, realignment

A horizontally
(vertically)
displaced
sextupole is seen
as a centred
sextupole plus an

tilt Error in the chromaticity Excitation of a additional offset quadrupole
correction “skewed sextupoles (45°) (skew quadrupole)

H.Schmickler, CERN

0

Correction summary

Effect of dipole kicks (8; ; ®;) on closed orbit (CO)

—_—

CO(s) = /it cos(mQ — |é(s) — &l

Effects of strength error in quadrupoles

DQ~ bkl AQ,~ ——F,AkL;

47 4z

i-beating from many sources:

ﬂ—fj(s) =+ [2:0 —2|o(s) — i)

Best correction: identify error source and repair(realignment; coil repair...)
If not: Typically close to every quadrupole small dipole correctors are
installed. So by measurement campaigns and data analyses corrections
strength for these small dipoles and to (skew) quadrupoles are applied.
More on this in the diagnostics lecture and the advanced part.

H.Schmickler, CERN
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cm Last not least: Collective effects

Collective effects:
= Summary term for all effects when the coulomb force of the particles in a bunch
can no longer be neglected; in other words when there are too many particles...

We distinguish:
i) self interaction of the particles within a bunch:
1) space charge effects

2) Intra beam scattering
3) Touschek scattering

leads to emittance growth and particle loss

ii) Interaction of the particles with the vacuum wall
-> concept of impedance of vacuum system

leads to instabilities of single bunches and multiple bunches

iii) Interaction of with particles from other counter-rotating beam
- beam-beam effects (= T.Pieloni this school)

Most is very advanced matter = here only concepts and buzz-words

H.Schmickler, CERN
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tm Space-charge Forces

In the rest frame of a bunch of charged particles, the bunch will expand

rapidly (in the absence of external forces) because of the Coulomb repulsion

between the particles.

The electric field around a single particle of charge ¢ at rest is a radial field:
g |1

Az, 1’

Applying a Lorentz boost along the z axis, with relativistic factor y the field
becomes:

q w E 4 » q r

, = yyy [_l-’ +-“: m r‘::)u: ¥ 4, [_\_: + _‘,1 + ‘y::g }\r: - = iz, {.‘_: + .‘,: + y_‘:l)u.'-:

For large y the field is strongly suppressed, and falls rapidly away from z = 0.
In other words, the electric field exists only in a plane perpendicular to the
direction of the particle.

H.Schmickler, CERN 78

Space Charge: Scaling with energy

Example Coulomb field: (a charge moving with constant speed)
1=1 gl

' -y
. ’
Recall from
. -‘-' relativity
’ .
L} L]

" In rest frame purcly electrostatic forces

= In moving frame £ transformed and |/ appears

Electrical field : repulsive force between two charges of equal polarity
Magnetic field: attractive force between two parallel currents

after some work: . el | \ v el o
" 2regfe a? ~ 2megfeq? al

-> space charge diminishes with 1/y2 scaling

- each particle source immediately followed by a linac or RFQ for acceleration

H.Schmickler, CERN
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cm Space Charge Tune Shift

The tune spread from space-charge forces for particles in a Gaussian bunch

of N, particles and rms bunch length a. is given by:

= 12;]‘;Nh - .§ B, ds
@x)"epr'elo.+0)

Av

where the integral extends around the entire circumference of the ring.

Since every particle in the bunch experiences a different tune shift, it is not
possible to compensate the tune spread as one could for a coherent tune
shift (for example, by adjusting quadrupole strengths).

MNote that the tune spread gets larger for:
» larger bunch charges
+ shorter bunches
* larger beta functions
+ lower beam energy (very strong scaling!)
* larger circumference
+ smaller beam sizes

H.Schmickler, CERN 80
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e CP Moscloier Bl
“footprint”
Space of' particles
charge with space
always ch?rge tune
defocusing shift.
The effect
dramatically
necktie - reduces at
S higher
energies
41 42 43 44 45
40
QH——=
ALSUITILRIE, LERIY 81
|
Touscheck effect
Wl o Aty icienll

The Touschek effect is related to intrabeam scattering, but refers to

scattering events in which there is a large transfer of momentum from the
transverse to the longitudinal planes. IBS refers to multiple small-angle
scattering; the Touschek effect refers to single large-angle scattering events.

If the change in longitudinal momentum is large enough, the energy

deviation of one or both particles can be outside the energy acceptance of

the ring, and the particles will be lost from the beam.

H.Schmickler, CERN
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Intrabeam Scattering

Particles within a bunch can collide with each other as they perform betatron

and synchrotron oscillations. The collisions lead to a redistribution of the

momenta within the bunch, and hence to a change in the emittances.

If a collision results in the transfer of transverse to longitudinal momentum at
a location where the dispersion is non-zero, the result (after many scattering

events) can be an increase in both transverse and longitudinal emittance

H.Schmickler, CERN
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m Interaction of beam with vacuum chamber

Resistive wall effect:
Finite conductivity

Narrow-band resonators:
Cavity-like objects

Broad-band resonators:
Tapers, other non-resonant
structures

84
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All together

g

~ecelex RS\

1/10/16 G. Franchetti 87

Impedance

§.

Impedance

V(t) = Zp(w)] cos(wt) — Z;(w) sin(wt)

1
Zrw)=R——"" 5
1+ Q2 ()
Qe
‘ Zilw) =—R——"" 3
. 14+Q? (422)
I = I cos(wt) "

The real (resistive) part dissipates energy, the imaginary part creates instabilities 8
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Consequences of impedances

Energy loss on pipes = heating (important in a superconducting accelerator)
Tune shift

narrow
resonances Broad

Z !
Single bunch instabilities (head-tail) More on this:

. . . Feedback lecture on Wednesday
Multibunch instabilities

89

“LIFE!S TOO SHOR I% DRINK'WARM BEER!”

We have discussed:

1) Back to school: relativity, EM fields, magnets...

2) Hamiltonian and canonical variables = equations of motion + invariants; map-approach
3) Single particle in various magnetic elements...action as invariant

4) multiple elements; circular accelerator

5) Twiss parameters

6) Finally a beam: emittance and emittance preservation

7) A taste of non-linearities

8) Linear imperfections (and some corrections)

9) Collective effects

90

Recommended reading:

¢ A. Wolski, Beam Dynamics in high energy particle accelerators,
Imperial College Press, ISBN 978-1-78326-277-9

* CAS proceedings and references therin
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