13.) The , Ap / p # 0“ Problem

ideal accelerator: all particles will see the same accelerating voltage.
2>4p/p=0

,nearly ideal” accelerator: van de Graaf

Ap/p=10-3

Hnot-at-all ideal” accelerator: RF structures

Ap/p=10-3
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14.) Gradient Errors

Remember: Matrix in Twiss Form

Transfer Matrix from point ,,0“in the
lattice to point ,,s “:

&(cosws +a,siny,) BB, siny,
Mis)= (a -a ;cos(z[/ -(l+a,a,)siny B
L= s O s B2 (cos@, -, siny,)
VBB, B !
For one complete turn the Twiss parameters B(s+L)=B(s)
have to obey periodic bundary conditions: a(s+ L) =a(s)
()< P Bsi0W, s+ D=r)
s)=
- }’s Sinws Coswtum _as Sinwtum
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Introduce Quadrupole Error in the Lattice
optics perturbation described by thin lens quadrupole

1 0) (cosy,,, +asiny,, Bsiny,,,
My =My M, = Nids 1 ’ . .
s -ysny,, cosy,,, ~asny,,
—— —
~—
quad error ideal storage ring
S
M cosy, +asiny, Fsiny,
dis = . . . .
| Akds (cosyp, + asing,) -ysing, Akds Bsiny, +cosy, - asing,
rule for getting the tune
Trace(M) =2cosy =2cosy, + Akdsfsiny,
Bernhard Holzer, CAS
Quadrupole error > Tune Shift
Akds 8 sin
Y=y, +AY _— cos@y, +Ay) = cosy, +#
¥ ber the old fashioned trig ic stuff and that the error is small !!!
. . kds fsin
cosy, cos Ay —singy, sin Ay = cosy, + %
—— —
=~ = Az//
kds
Ay = kdsp
2
and referring to Q instead of y: ! the tune shift is proportional to the f-function
Y= 270 at the quadrupole
1! field quality, power supply tolerances etc are

much tighter at places where [ is large

AQ S0t Ak(s)ﬂ(s)ds !!! mini beta quads: = 1900 m

J Az arc quads: f =80 m
111! B is a measure for the sensitivity of the beam
Bernhard Holzer, CAS




A quadrupol error leads to a shift of the tune
... and this can be used to measure the f-function

p0-"f B 4 AKouP
o 4T 4m

GIoS NR

y=-67863+ 03883
03050

03000

5 o250

8 2000

Example: measurement of § in a storage ring:
tune spectrum

02850

[ S sty ey
02800
ootas0 o0t300 ootas0 oota00 ootas0
L

Beyond that: without proof (e.g. CERN-94-01)
A quadrupole error will always lead to a tune shift, but in addition to a change of the beta—function.

B(s) LT <
AB(s) = Wzsng) § BGIAK(S) cos(2](s) - (3)

- Q) ds

As before the effect of the error depends on the p-function at the observation point as well as at the
place of the error itself, on the error strength and there is again a resonance denominator
= half integer tunes are forbidden.

Bernhard Holzer, CAS

15.) Chromaticity:
A Quadrupole Error for Ap/p # 0

Influence of external fields on the beam: prop. to magn. field & prop. zu 1/p

dipole magnet o=

()= D(s) 2
)4

focusing lens

cell length . .
Figare 26: FODO cell particle having ...

to high energy
to low energy
ideal energy
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Chromaticity: Q' <

k== P=py+Ap
P 0
4

in case of a momentum spread:

k=—% € By iak
Py+Ap  py Py

Ak = —%k0
Po

... which acts like a quadrupole error in the machine and leads to a tune spread:

AQ = —L%koﬂ(s)ds
4 p,

definition of chromaticity:

o o _1
AQ=0 oo U fk()B(s)ds

Bernhard Holzer, CAS

. what is wrong about Chromaticity:

Q' is a number indicating the size of the tune spot in the working diagram,
Q' is always created if the beam is focussed

- it is determined by the focusing strength k of all quadrupoles

Tl :
0'=-— P BOk(s)ds

k = quadrupole strength
= betafunction indicates the beam size ... and even more the sensitivity of
the beam to external fields

Example: LHC >Some particles get very close to
0'=-250 resonances and are lost
Aplp=+/-0.2 *107 in other words: the tune is not a point
40=10.256 ... 0.36 it is a pancake

Tune signal for a nearly uncompensated cromaticity ( Q'

Bernhard Holzer, CAS




Tune and Resonances

m*Q An*Q +l*Q = integer

Tune diagram up to 3rd order

... and up to 7th order

Homework for the operateurs:
find a nice place for the tune
where against all probability
the beam will survive

Bernhard Holzer, CAS

Correction of Q’

Ap
1) sort the particles acording to their momentum Xp(s) =D(s)——

2.) apply a magnetic field that rises quadratically with x (sextupole field)

B_=gxy
T oB B P linear rising
B iont ™
By _ %g(xz _ yz) ay ax wgradient
Sextupole Magnets:
2 .z normalised quadrupole strength:
Eisenjoch T Spulen
Eisenjoch H ~
ax
. sext = ﬁ =M ®
S S Ap
" \\ A ~ ksext = msext.Di
- — p
1 A R 1 F For 1 D D oD
Ol =y Bly =By +— DKLl DIB -— S kPl DB
s = g o Py = kaBly . FJE”’ 2w D: B an L;m 2 Lo D B,
cor , -1 - 8 1 F Far, 1 D D pD
Qs = A HPoly 4Bl = DIk LB+ S KL, DB

Fsext Dsext
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Chromaticity in a FODO Cell

— .
Q' = *fk()B(s) ds , \ 7
| m—  — ;‘:_J  Se— e

3 w cell H 1/)“,,,
1+sin =<)L 1-sin=<4)L
( 5 ) ( 5 )

p-Function in a single FoDo /;, _ B _
siny,, siny,,,
0= ;1 * ﬁ
4z f,
11 L(1+sinM)-L(1 —sinu)
Q=—r—x 2 2

4z f, siny,,,

Bernhard Holzer, CAS

using some TLC transformations ... Q’ can be expressed in a very simple form:

11 2L sin Wear
Q=""w_w__ 2
47 fo siny,,,
H UJu//
C -1, L smT

. X X
remember ... sinx = 2sin=cos =

4 fQ sin Year cos Ve
2 2

-1
QJ el = *
4fo  sin L’;"

L tan ch[[
2 Yo _ L

sin-—el =

utting ...
putting 2 4,

-1, 5
Q‘fw = *tan Yeen
.4 2

and so we have to power the sextupoles properly ...

AQ, = (k1D B - kPLD )
- :

, -1
AQ) = —*{-KLDIB/ +kLD?B)}
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5.) Lattice Design: Insertions

... the most complicated one: the drift space

Question to the auditorium: what will happen to the beam parameters a, p, y if we
stop focusing for a while ...?

B c: sc S\ (B
al =|-cc' sC+S'C -SS'|*|a
7], c?  S'Cct S® 7),

. . c S 1 s
transfer matrix for a drift: A = =
c' S 01

2
/)’(S) ﬁo 20(0S oS »0 “refers to the position of the last
a(s)=a, -y, lattice element
8 “refers to the position in the drift
y(s) =7,

Bernhard Holzer, CAS




beam waist: &= 0
1

location of the waist:

|
v

given the initial conditions a, f3, y,: where is the point of smallest beam
dimension in the drift ... or at which location occurs the beam waist ?

beam waist:

a(s)=0 — a,=y,*s

1=
Yo
beam size at that position:
W=r gy ka1 py=1
a()=0 s B Yo

Bernhard Holzer, CAS

p-Function in a Drift:
let ‘s assume we are at a symmetry point in the center of a drift.

B(s) =y —2a,s + }’osz

1 2
as a,=0, — y,= t% =L
b B
and we get for the B function in the neighborhood of the symmetry point
S,2
Bs) =Py +— 1"
By
Nota bene:
.. Joseph Liouville,
1!
1.) this is very bad !!! 1809-1882

2.) this is a direct consequence of the
conservation of phase space density
(... in our words: & = const) ... and
there is no way out.

3.) Thank you, Mr. Liouville !!!

Bernhard Holzer, CAS




A bit more in detail: p-Function in a Drift

If we cannot fight against Liouvuille theorem ... at least we can optimise

Optimisation of the beam dimension:

12
pU)= B+ —
"B
Find the f at the center of the drift that leads to the lowest maximum f at the end:
di/;) -1- i -0 = A=l
dp, B

! ! _>/;7=2ﬂ0

n—_ —nN
U . U

If we choose 3, = we get the smallest f§ at the end of the drift and the
maximum [ is just twice the distance €

Bernhard Holzer, CAS

... and why all that 2?
High Light of the HEP-Year 2012 / 13 naturally the HIGGS

!

X

>

ATLAS event display: Higgs => two electrons & two muons

Bernhard Holzer, CAS




Problem: Our particles are VERY small !!

Overall cross section of the Higgs:

\s=7TeV

3

i
i
i
|

6(pp > H¥X) [pb]

100 200 300 400 500 1000
M, [GeV]
1b =10 cem? The particles are indeed “very small”

Ipb= 107" *10 cm® =1/ mio*1/ mio* 1/ mio*1/ mio*1/ mio*1/10000 mm”

The only chance we have:
compress the transverse beam size ... at the IP

During collider run we had in Run 1 ...
1400 bunches circulating,
with 800 Mio proton collisions per second
in the experiments and collected

— ® only 450 Higgs particles in three years.

LHC typical:
c=0Imm > 16um

Bernhard Holzer, CAS

6.) Luminosity & Minibeta Insertion

R = L * Zredct
p2-Bunch
1 I II 2
10 11 particles = 3 SR
p1-Bunch 47ze f;)nb O’XO'y

10 ! particles

Example: Luminosity run at LHC

B.,=055m fo=11.245kH?
£, = 5107 rad m n, =2808
o, =17
-y wm production rate of events is determined by the
I =584 mA cross section X, and the luminosity which is
’ given by the design of the accelerator

L=1.0%10% %mzs

Bernhard Holzer, CAS
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The LHC Mini-Beta-Insertions

Jnner Separation/ Matching
ATLAS . TrlPIet| , p « y Quadrupoles
2 o 01 02 03 DI Teftuuy £ D2 04 0
s X assn  collimator S ¢sn
B(s)=Fy+—- AT s i
By Il — 2
ST o issol]  {
iy Jue— D—
A Al
5000, -LHC Error Analsis_ MAD-X 30003 0312008 1035,00
00| P B
4000. . |
3500. | 1
3000. “J ‘
2500. | |
2000. J/ ‘ ‘
1500. I
1000. \
500. \/
U’Vz‘ 850 13.135 13.420 13.705

Momentum offset = 0.00 %
sm) [410%%( 3)]

LHC mini  optics

Bernhard Holzer, CAS

Mini-f Insertions: A look into phase space

A mini-f insertion is always a kind of special symmetric drij
Dgreetings from Liouville

(i

space.

and beam divergence.

at a symmetry point f is just the ratio of beam dim

Bernhard Holzer, CAS
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Mini-f Insertions: Phase advance

By definition the phase advance is given by: D(s) = f B(s )

N
Now in a mini § insertion: Bs)=p4, 1+—=)
0

L
ds = arctan —

— (s
R f 1+s° / B By
¢(S%0 Consider the length of the drift spaces
50 on both sides of the IP:
?8 the phase advance of a mini f§ insertion is
-10 always close to
30 in other words: the tune will increase
.38 by half an integer.
=90

~50 "40 “30 "20 710 O 10 20 30 40 50

LB

Bernhard Holzer, CAS

Are there any problems ?

sure there are...

* large f values at the doublet quadrupoles = large contribution to
chromaticity Q° ... and no local correction (... why not 22?)

= _—lgﬁK(s)/a’(s)ds
4

* aperture of mini ff quadrupoles
limit the luminosity
beam envelope at the first

mini f quadrupole lens in
the HERA proton storage ring

* field quality and magnet stability most critical at the high f sections
effect of a quad error:

! M(‘)ﬁ(‘)d‘ AB( )_ﬂfﬁﬁ 5 §)|-7Q)ds

A0 = f = D sin(270)

> keep distance ,,s “to the first mini f quadrupole as small as possible

Bernhard Holzer, CAS
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Mini-p Insertions: some guide lines
* calculate the periodic solution in the arc
* introduce the drift space needed for the insertion device (detector ...)
* put a quadrupole doublet (or triplet ??) as close as possible
* introduce additional quadrupole lenses to match the beam parameters
to the values at the beginning of the arc structure

D.,D

'
X X X

a,

par ters to be optimised & matched to the periodic solution: ~ ¢, /J)y Qxy Qv

8 individually
powered quad fiv i\
magnets are /| \
needed to match
the insertion

(... at least) ANANNAN Ao N\ \ind N/\' o 7
et AN B AVAVAVAVAVAVAVAVAVAVAVAVAYAV ARV AR VAYZIVAVAVAVAVAVAVAVAVAVAVA

o 200 400 600 800 1000 1200 1400
s ——-> (W

L}

Bernhard Holzer, CAS

7.) Dispersion Suppressors

There are two rules of paramount importance about dispersion:

it is nasty
! it is not easy to get rid of it.

remember: oscillation amplitude for a particle

A
with momentum deviation x(s) =x,(s)+D(s)* £
P
beam size at the IP dispersion trajectory
o =17um _

D=15m gzll*l(ﬁ X, =165um
p

Dispersion in a FoDo cell with Dipoles:
(proof see appendix)

1 1
C(5)ds -C(s)*
o) I

R . D(s)=S(s)*[ S(3)ds

1.y ) ( 1. w.,)
, |1+ =sintedl 1 - —sintet
ﬁ=£*( 2 2 D=ﬁ* 2 2
P P

H sin? Ve
2

sin? Yeen
! 2

i
i
H
i

Bernhard Holzer, CAS
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Dispersion Suppressor Schemes

There are some locations in the ring, where the dispersion has to vanish,

* at the IP, to avoid unnecessary increase of the

beam size

* at the RF to avoid unwanted coupling between transv. and long. oscillations

* at the injection / extraction points etc

The way the trick goes: ... we turn it the other way round

Starting from D = D’ = 0, we create dispersion in combining the dispersive effect of the dipoles and
the phase advance at their location (defined by the quadrupoles) in such a way to get

the D, D’ values of the periodic arc

Three major schemes:

1.) The straight forward one: Quadrupole based Dispersion suppressor

use additional quadrupole lenses to match the optical parameters ... including the D(s), D’(s) terms

* Dispersion suppressed by 2 quadrupole lenses,

* [ and o restored to the values of the periodic solution by 4 additional quadrupoles

D(s), D'(s),

B.(s), ax,(s)

B,(5),a,(s)

;

6 additional quadrupole
lenses required

Bernhard Holzer, CAS

S S e e

T e g e g e

Dispersion Suppressor
Quadrupole Scheme
]
D
periodic FoDo
structure
Advantage:
! easy,

! flexible: it works for any phase
advance per cell

! does not change the geometry
of the storage ring,

! can be used to match between different lattice
structures (i.e. phase advances)

matching section dispersion fiee
including 6 additional  section, regular

quadrupoles FoDo without dipoles

Disadvantage:

! additional power supplies needed
(— expensive)

! requires stronger quadrupoles

! due to higher f values: more aperture
required

Bernhard Holzer, CAS




8.) The Missing Bend Dispersion Suppressor

... turn it the other way round:
Start with D(s)=0, D'(s)=0

and create dispersion — using dipoles - in such a way, that it fits exactly the
conditions at the centre of the first regular arc cells:

) (1 +lsin Yeer
2 2

D(s)=S(s)*fﬁC(E)df—C(s)*fﬁé‘(f)d& - D=1t ) D'=0

r
14 gin? Feell
2

Depending on the phase advance, add at the end of the arc:
m cells without dipoles
followed by

n regular arc cells.

Bernhard Holzer, CAS

The Missing Bend Dispersion Suppressor

conditions for the (missing) dipole field scheme:

sin = % ,k=0,2 or
2m+n T
Q. =2k+1)= _
¢ 2 sinnq)C —],k=l,3
2
Cooking Recipe:
At the end of the arc we add m cells without dipoles
followed by n regular arc cells.

N N\  Example:

- phase advance in the arc D= 60°
.- number of suppr. cells m =1
. number of regular cells n=1

Bernhard Holzer, CAS
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‘ 9.) The Half Bend Dispersion Suppressor

at the end of the arc cells we add a number of “n” additional cells, with different
dipole strength.

depending on the phase advance per cell different possibilities exist with the

general condition for vanishing dispersion

2%, *gin? (% )=6,. g‘m = dipole strength in the arc

.= dipole strength in the suppressor cells

n = number of suppressor cells

(proof see appendix) @, = phase advance of the cells

1

so if we require 55‘,},, = E *0,e which means we iunstall dipoles of half the
arc strength
. 5, nd,
we get sin?(—<) =1
2
and equivalent for D’=0  sin(n®_) =0 n®, =k*m, k=13,..

Bernhard Holzer, CAS

‘ The Half Bend Dispersion Suppressor

combining these two conditions
sin(®)
. sin 2(®/2
sin’ (%()“) =1, sin(n®,) =0 )
the phase advance in the n suppressor cells has to
accumulate to a odd multiple of « O/n
nd =k*m, k=13, ...
Example:
| 51-700 Bing rur Zauthen e _seutren. M.(T;er smogupans - . phase advance in the arc ¢C = 60°

number of suppr. cells n =3

phase advance in the arc .= 90°

number of suppr. cells n =2

) strength of suppressor dipoles is half as
° 5 strong as that of arc dipoles,

Bo =1/2 8,

suppr

Bernhard Holzer, CAS
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Advantage: Disadvantage:

! elegant ! changes the geometry of the machine
think first, digg later
! requires different dipoles
! no additional quadrupoles required (e.g. shorter, or weaker)
! limits the achievable beam momentum
B*p=p/q
! lower field dipoles are often required anyway | yworks for specific phase advances per cell

! does not affect the beam optics

! no impact on aperture

Bernhard Holzer, CAS

2
o B(s) =+
5.) Mini p insertion 2

s
Resume
1. Y., Ll Wy
1.) Dispersion in a FoDo cell: .02 (1+7sm 2 = ! 2%
small dispersion < large bending radius D=—* 71[} D= ; 2P
short cells P sin?® Feell sin %
strong focusing 2
2.) Chromaticity of a cell: , -1
small Q” < weak focusing Q’“’“’ = H¢{K(s) - MD(S)}ﬁ(S)dS
small B
3.) Position of a waist at the cell end: 1= 70
a, By = values at the end .
of the cell
4.) B function in a drift B(s) = B, - 2a,5+1,8°

Bernhard Holzer, CAS
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Appendix I: The Beam Matrix and the Mini-Beta

,Once more unto the breach dear friends:“
Transformation of Twiss parameters

just because it is mathematical more elegant ...

let s define a beam matrix: B, = (

and a orbit vector: X, = ( X

. Yo o X ‘
the product XOT * B E X = (xg,X') *( 0 0) *( 0) = yXo + 200X, +BxX) = €
— a, B
. . ... Is constant
transformation of the orbit vector: X, = M* X

and soweget: €=X," *B;'* X, = X! M"(M")" B;' M"'M X,
=Xg M"{(M")" B! M™'}M X,

Bernhard Holzer, CAS
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Transformation of Twiss parameters
and using A"B" =(BA)" and  A”'B”' =(BA)"
e=Xy M" {(M"y"(MB)"} M X,

-x! M" {MB,M"}" M X,

= (Mx,)" {mMB,M"}" MX,
) —

- -1
but we know already that \

e=const= X, *B;'*X, = X *B'*X,

and in the end and after all we learn that ... in full equivalence to ...
2 2 2
B -a B my, CLTULY LT B
| 1 @
B, = (a v ) =M*B,*M al =|=mymy My + My =My, | *| o
1 | 2 2
V] n, =2my,my, My o

Bernhard Holzer, CAS

Transformation of Twiss parameters P beam waist: a = 0
:
. . ———————— s
Example again the drift space [

... starting from a, =0 M= (1 5)
0 1

Bo =( /3)0 _O‘o) _ (ﬁo 0 )
A Yo 0 1/B,

1 0 10
Beam parameters after the drift: B, = MBOMT = (0 i) * (/30 ) *( )

0 1/8,) \s 1

Bernhard Holzer, CAS




Appendix II: Dispersion

... solution of the inhomogenious equation of motion

the dispersion function is given by

1 1
D(s)=S(s)* —C(5)ds -C(s)* —S8(5)ds
fﬂ( 5) fﬂ( )
3 O P €O ap L oo S3)
proof:  D'(s)=S'(s) fp(E)C(s)dEJfS(s) 26 C'(s) fp(E)S(s)dE C(s)p(g)

C N
D'(s)=S8"(s)*[—ds - C'(s)*[—ds
6 =S [l Cls)* [

D" (s) :S”(s)"fgdf+s'£— C"(s)*fia's”—C'E
I /4 P /4
D'"(s)= S"(s)*fgd.?fC"(s)*+l)(CS’f sC)
P P
=det(M) =1
D'(s)= S”(s)"fgt/ﬁ—C”(s)*fgd.?+l
P PP
now the principal trajectories S and C fulfill the homogeneous equation

S"(s)=-K*S , C"(s)=-K*C

Bernhard Holzer, CAS

and so we get: D"(s)=—K*S(s)*fgaﬁ+K*C(s;)*f£:ﬁ+i
P p P

D"(s)= —K"‘D(s)-+—i
Y4

D" (s)+ K *D(s) =l
o

qed.

Bernhard Holzer, CAS

20



Appendix I11: Dispersion Suppressors

... the calculation of the half bend scheme in full detail (for purists only)

1.) the lattice is split into 3 parts: (Gallia divisa est in partes tres)

* periodic solution of the arc periodic B, periodic dispersion D
* section of the dispersion suppressor  periodic B, dispersion vanishes
* FoDo cells without dispersion periodic B, D=D"=0

Tes1—FODO Ring fur Zeuthen typ_zeuthen. zeuthencel2. kf=—0 §41/mw=2

EESLE LS 4T 40 XA A\/E

2

Q) Ed =

Bernhard Holzer, CAS

2.) calculate the dispersion D in the periodic part of the lattice
transfer matrix of a periodic cell:

%(cos¢+ a, sin @) BB, sing

0
05 =

(a, —ag)cosp—(1+ a o) sing By .
(cos¢p — a sing)
vV ﬂSﬁO 0

for the transformation from one symmetriy point to the next (i.e. one cell) we have:

@ = phase advance of the cell, a = 0 at a symmetry point. The index “c” refers to the periodic
solution of one cell.

cos®.  B.sin®. D()

c S D |
Mg, =|C'" S'" D'|=|—sin®. cos®. D)
0 0 1 <

0 0 1

The matrix elements D and D ‘ are given by the C and S elements in the usual way:

D(I)=5(I) *f L c@yds—cy* _}‘%S(E)ds

()

D'()=S'()* fﬁas)dg —C()* fﬁsg)d&'

Bernhard Holzer, CAS
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here the values C(/) and S(/) refer to the symmetry point of the cell (middle of the quadrupole) and the
integral is to be taken over the dipole magnet where p # 0. For p = const the integral over C(s) and S(s) is
approximated by the values in the middle of the dipole magnet.

Transformation of C(s) from the symmetry point to the center of the dipole:
D

C,= Lo cos AD = Lo cos(—<=¢,)
\ e \ e 2

where B is the periodic B function at the beginning and end of the cell, B, its value at the middle of

. D
S, =B, Besin=E=g,)
the dipole and ¢,, the phase advance from the quadrupole lens to the dipole center.

Now we can solve the intergal for D and D’:

S| 1
DD)=SH)* | —CG)ds-C(DH* S(5)ds
(D) =5 {pm (5)ds - C(1) {p(i) (®)ds
D)= ﬁ(, sind)(, * L

°

D . D
By *cos(—‘:(pm)—coslbt,*E‘lﬁmﬂ(_ *sin(—<=¢,)
Be 2 P 2

Bernhard Holzer, CAS

remember the relations

D(1)=26+,B; *cosg, {sin D *cos

D(l)=26/,B- *cosg, {2 sin

C

D(1)=6B,B: {sinq’(‘ [cos(q; +@,) +cos(%—¢m)] -

. D . D
—cos P, [sm(—; +@,)+ sm(—; -, )] }
I have put 8 = L/p for the strength of the dipole

X+Y, X-y
COSX +C0s y =2cos Cos——

. . Xty x-y
sinx +sin y = 2sin *cos —

D
D(1) =6 B,.Pc {sinq)c *2c0575*c05¢m —cosd, "‘25in—"‘cos¢7m}>

c

D
*—cos® . *sin—<
2 ’ 2

sin2x = 2sin x *cos x

2 a2
€0S2Xx =Cos” x—sin” x

D ., D . D
—C *cos’ TC —(cos® TC —sin® 7") *sin TF}

Bernhard Holzer, CAS
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()]

D(l) =264/ B,,B. *cos g, *sin %{2 cos’ % —cos’ % +sin? TC}

D) = 20\[F B *<osg, *sin ¢

in full analogy one derives the expression for D “:

D'(1)=28,8,/B. *cosg,, *cos%

As we refer the expression for D and D * to a periodic struture, namly a FoDo cell we require
periodicity conditons:

DC DC
D, |=M_.*| D_
1 1
and by symmetry: D' =0

With these boundary conditions the Dispersion in the FoDo is determined:

[
D.*cos®. +5+B,B. *cos g, *2sin7c =D,

Bernhard Holzer, CAS

“n

m

D,
D. =8B, *cos, /sinTC

This is the value of the periodic dispersion in the cell evaluated at the position of the dipole magnets.

3.) Calculate the dispersion in the suppressor part:

We will now move to the second part of the dispersion suppressor: The section where ... starting
from D=D ‘=0 the dispesion is generated ... or turning it around where the Dispersion of the arc is
reduced to zero.

The goal will be to generate the dispersion in this section in a way that the values of the periodic cell
that have been calculated above are obtained.

The relation for D, generated in a cell still holds in the same way:

D(l)=S(l)*fp(1§)C(§)dS- —C(l)*‘{%S@)dE

0

Bernhard Holzer, CAS
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as the dispersion is generated in a number of n cells the matrix for these n cells is

cosn®.  f.sinn®. D,

n

-1 .
M,=M;=|—sinn®. cosn®. D'
2

0 0 1

D, = f.sinn® *6,,,, * ECOS(KDC - %q)c =@,)* % -
= .

~cosn %0, 3 AL *Sin - 30 2 ,)

T

. Q N S LD
D, =B, B; *sinn® %o, * 2 cos((2i - I)TC £0,) =B, * Oy, ¥cosn® 2 sin((2i - 1)75 +@,)

COS X +C0s y = 2€0s cos——
2 2 2

. . . X+ x- X+y xX-y
remember: sinx +sin y = 2sin zy *cos—y *

n,

. [
D, =06, *\B,B: *sinnd * 2 cos((2i -1) TC) *2cosg, —

=gy ¥/ B, B *¥cOs n®. 2 sin((2i - 1)%) *2cosg,

Bernhard Holzer, CAS

D, =26, *\B,B *cos@, {2 cos((2i - 1)%) *sin nd, — 2 sin((2i -1 )%) *cos nfb(}

T

. nd, n®. .on®. . nd.
sin *cos —< sin *sin
D, =26, *\[B,Be *cosg, {sinnd | —2——2—|-cosnd.* o
sinTC sin—¢<

28, %/ - *cos X . nd.
p =—=w X°m T 7" BB P sinn® . *sin 2¢ x¢os
A D, )
sin—<
2

n

€ —cosn®,. *sin” e
2 2

set for more convenience x = n®d/2

n

20, *\|B.Bc *cosg,
RN . . ;
D =W{smbﬁsmx*cosx—cost*smzx}
. D,
sin—<
2

20, ¥\ BB *cos@,
- ml’C m . . . .
D, =“"‘7{251nxcosx*cosxsmx—(coszx—smzx)smzx}

sin—¢
2

Bernhard Holzer, CAS
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“2) b Wu BB *eosg,
2

n )
sin—¢&
and in similar calculations:

20, * . *cos
Pt BB * 05 Gy yo o,

. D,
sin—<

2

This expression gives the dispersion generated in a certain number of # cells as a function of the dipole

kick & in these cells.
At the end of the dispersion generating section the value obtained for D(s) and D ‘(s) has to be equal
to the value of the periodic solution:

—equating (A1) and (42) gives the conditions for the matching of the periodic dispersion in the arc
to the values D = D ‘= 0 after the suppressor.

D = 20, * ,5,”,55 *cosg, . ., nd, =5 % COSQ,

, = MO e win D¢ o, BB+

sin—¢ 2 sin—<
2 2
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. 5, nD
=20, S (T =0, | o1,

supr o are
— sin(n®.)=0

and at the same time the phase advance in the arc cell has to obey the relation:

n®, =k*m, k=13, ..

Bernhard Holzer, CAS
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Appendix IV: Dispersion in a FoDo Cell

equation of motion

x"+K(s)*x=0 K=—k+%02

single particle trajectory considering both planes

x(s) x(s9)
X X(s)
Y [ (s
y'(s) Y'(s0)

e.g. matrix for a quadrupole lens:

momentum error:
AV;eo Frx-ky =221
P o PP

general solution:

X(5) = 3,(5) +,(5) N
© } x(s)=xﬁ(s)+D(s)-?p
X (S
D(s)="1
7
X c § D X
X' =lCc' S' D'|*| x'
Ap 0 0 1 Ap
2N P )
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1
cos(+/|k|s ——sin(4/|k|s 0 0

R ¢ 5o
M —MSiH(Ms cos(Ms 0 0 c,. s 0 0
for = 1 Tlo o ¢ s
0 0 cosh(4/|kls ~ ——sinh(4/kls y y
W K W 0o 0 ¢ s,

0 0 \/W sinh(\/Ws cosh(\/Ws

Bernhard Holzer, CAS
Dispersion
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Dispersion

the dispersion function D(s) is (...obviously) defined by the focusing properties of the
lattice and is given by:

1 1
D(s)=S(s) *C(E)di - C(s)*(i)di

| ! weak dipoles = large bending radius = small dispersion |

Example: Drift

11 1 1
M, - D(s)=S(s)* C(3 )d5 - C(s)* [——S(5 )d5
’ (o 1) ()= 3OT ) OB COI 5 S0
—— —
=0 =0
110
=M, = 8 (1) (1) ...in similar way for quadrupole matrices,

!!!in a quite different way for dipole matrix (see appendix)

Bernhard Holzer, CAS

Dispersion in _ |
a FoDo Cell: R A

! we have now introduced dipole magnets in the FoDo:
- we still neglect the weak focusing contribution 1/p?
-> but take into account 1/p for the dispersion effect
assume: length of the dipole =1,

Calculate the matrix of the FoDo half cell in thin lens approximation:

in analogy to the derivations of 4, /;’

* thin lens approximation: f= E >>1,
1
* length of quad negligible  1,~0,—1, = 5 L
* start at half quadrupole 11
fo2f

Bernhard Holzer, CAS
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Matrix of the half cell

= * *
MHaI/CeII = M@ M, Mg
2

¥}

1 0 ! 7 1 0
M Halfcell — i 1 *( 0 1)* ;} 1
f S
1-% 1
c S
Mua//w[:( c s )= _1 1+1
S v

calculate the dispersion terms D, D’ from the matrix elements

s L o - Cos) ¥ — L S(x
D(s)=S(s) fp(i)C(s)d‘ C(s) fp(g)S(s)ds”

Bernhard Holzer, CAS

1 s 0.1 ¢
D) =0*=—[(1-2)ds—(1-=)— [ sd:
p{ f ’ f p{s ’

b g S—— S—— S——
S(s) C(s) C(s) S(s)
2 2 2 3 2 3
D(€)=£(€—l—~)—(l—£)*l*£ I
P 2f Sop 2 P 2fp 20 2fp

and we get the complete matrix including 1- é Vi
the di ion t D, D’
e dispersion terms c s D { .
M,ew=| C S D' |=| = 1+=
alfCel fZ f
0 0 1
0 0

. . . l ~
in full analogy on derives for D ﬂ + 5 .

Bernhard Holzer, CAS
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Dispersion in a FoDo Cell:

boundary conditions for the transfer from
the center of the foc. to the center of the

defoc. quadrupole
D D V6
0|=M,,* 0
1 1
D
2
~ D-bDa-LH+ L - 0=-—
2p
o2 (# lsinM v o (- 1sinM where g denotes the
D=tx_2 2 D=tx_2 2 phase advance of the full
P gin?Yea P in Ve cell and 1/f = sin(y/2)
2 2
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Dispersion in a FoDo Cell

Nota bene:

0 10 \
8 ‘\‘ \ ! small dispersion needs strong focusing
Dma( 6 : — large phase advance
| D ' . .
Do), - 1! < there is an optimum phase for small
11! ...do you remember the stability criterion?
2 Do % trace = cos y > y <180°
O T e w0 150 %o 1111 ... life is not easy
1 m 180
latest news: TLEP E=175 GeV
C, = 100km, y=90°
e L i Yot 1=50m, p =9400m, D = 14cm
L’\) 5k 2 2 016 :u-w’; it MAD-X $.01.00 1607712 11,1902
P sin2 wwll 120, ngZ.tets wuapxsor s nivo 014 mm
2 ! b s
" 1 oo
pos| | ] |

0L . L
2000 0, 6000, 00 2000 4000, 4000, 8000,
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