Course on Optics Design

W. Herr, G. Sterbini, CERN

5 September 2017, RHUL

guido.sterbini@cern.ch

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

CAS2017 PRACTICAL COURSE ON OPTICS DESIGN

► GOALS:

- From the lectures to praxis
- Design a realistic machine optics with various features
- Not a lecture, but following a series of steps (as exercises) applying what was learned in previous lectures
- Done by you in close collaboration with the tutors and your colleagues (cooperative approach is encouraged)
- The MAD-X program is used for this course

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

PROCEDURE AND BASIC STEPS

- ► First week: work on 4 exercises
 - Design of periodic machine: starting with the geometry (Ex. 1) and the β-function properties (Ex. 2)
 - ► Correction of chromaticity (Ex. 3)
 - Design of a dispersion suppression (Ex. 4)
- Second week: work on group projects
 - ► 5 different projects for 5 groups on:
 - Low- β insertion.
 - Closed orbit correction.
 - Tracking of particles.
 - ► Transfer line.
 - Beam extraction.
 - Each group will present the project on the 14th Sept afternoon.

The program

Time	Sunday 3 Sept.	Monday 4 Sept.	Tuesday 5 Sent.	Wednesday 6 Sent.	Thursday 7 Sent.	Friday 8 Sept.	Saturday 9 Sent.	Sunday 10 Sept.	Monday 11 Sept.	Tuesday 12 Sept.	Wednesday 13 Sept.	Thursday 14 Sent.	Friday 15
				- 4 -									Sept.
08:30		Opening Talks	Introduction to	Wakefields	Beam	Beam	Electron		Beam-Beam	NLD Methods	NLD Methods	Low	
			Lattice Cells	and	Instabilities -	Instabilities	Cloud and		Effects	and Tools II	and Tools III	Emittance	
				impedances	Longitudinai	Transverse	instabilities					Machines I	
09:20			B. Holzer	G. Rumolo	K. Li	G. Rumolo	K. Li		T. Pieloni	W. Herr	W. Herr	A. Wolski	
09:30		Recap.	Recap.	Space Charge	Space Charge	Instabilities	Feedback		Timing and	NLD	NLD	Insertion	
		Transverse	Longitudinal	in Linear	in Circular	in Linacs	Systems II		Synchronis-	Phenomenology	Phenomenology	Devices	
	^	Beam Dynamics	Beam Dynamics	Machines	Machines				auon	1			
	R		· ·							Y.	Y.		D
10:20		H. Schmickler		M. Ferrario	M. Ferrario	M. Ferrario			A. Gallo	Papaphilippou	Papaphilippou	J. Clarke	
10:30	R	COFFEE	COFFEE	COFFEE	COFFEE	COFFEE	COFFEE	E	COFFEE	COFFEE	COFFEE	COFFEE	E
11:00	T	Introduction to	Introduction	Recap	Energy	Feedback	Discussion on	x	NLD Methods	Study	High Brightness	Low	р
	· ·	Measurement	Instrumentation	Beam	Linacs	Systems 1	instabilities		and roots r		Diagnostics	Machines II	1.1
	v	Techniques	and Diagnostics	Dynamics II				C					A
			п										
11.00	A	N	D 1		A Texternation			U			1 Clark		R
12:00	L	Introduction to	Introduction to	Introduction	A. Jankowiak	Landau	Advanced	R	W. Herr Beam Cooling	Advanced	A. Cianeni Discussion on	A. WOBKI	т
12.00		Beam	Insertions	to Non-Linear	Damping I	Damping II	Concepts for		Dean Cooning	Magnet	Non-Linear	Concepts for	
		Instrumentation		Dynamics			Beam-Driven	S		Technologies	Dynamics	Laser-Driven	U
	n	and Diagnostics					Acceleration					Acceleration	P
12:50		R Iones	B Holzer	Y. Pananhilinnou	V Komilov	V Komilov	M Ferrario	1	M Steck	L Quettier			<u> </u>
12.00	A	LUNCH	LUNCH	LUNCH	LUNCH	LUNCH	LUNCH	0	LUNCH	LUNCH	LUNCH	S. Hooker	E
14:30		Recap	Lowen	Lonch	Lowen	LUNCH	Lowen	i	LUNCH	Lowen	Lowen	Lowen	
	Ŷ	Transverse						N					D
		Beam Dynamics											
		"			r.				010203			010202	A
15:20		H. Schmickler	C1 C2 C3	C1 C2 C3	· ·	C1 C2 C3	C1 C2 C3		010205	C1 C2 C3	· ·	Presentations	
15:30		Introduction to	1		R						R		Y
		Optics Design											
					E						Е		
					Е						Е		
16:20		B. Holzer			1						1		
16:30	Basis	COFFEE	COFFEE	COFFEE	1	COFFEE	COFFEE		COFFEE	COFFEE		COFFEE	-
17:00	tration	151M	01 02 03	010203		C1 C2 C3	010203		C1 C2 C3	C1 C2 C3		Ciosing Talks	
19:30	Dinner	Dinner	Dinner	Dinner	Dinner	Dinner	Dinner	Dinner	Dinner	Dinner	Dinner	Dinner	1

C1 - Beam Instrumentation and Diagnostics; C2 - RF Measurement Techniques; C3 - Optics Design and Correction

AVAILABLE TOOLS

- Individual computer with unix-like operating system. You can access the them with via Window7 machines (see Stewart's talk):
- ► You can also try to use your laptop if you prefer.
 - download MAD-X from www.cern.ch/madx
- We will use the CAS2017 INDICO site to post all the needed material and, as we progress, the solutions.
- You can access the material also on the following folder available on the UNIX machines

/afs/cern.ch/work/s/sterbini/public/RHULCAS

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

DO NOT HESITATE TO ASK AND SHARE YOUR DOUBTS

WE ARE HERE TO HELP!

- Stewart BOOGERT
- Werner HERR
- ► Bernhard HOLZER (1st week)
- ► Kevin LI (1st week)
- Yannis PAPAPHILIPPOU (2nd week)
- Guido STERBINI

INTRODUCTION TO MAD-X

MAD-X: Methodical Accelerator Design version 10.

DISCLAIMER. This material is intended to be an introduction to MAD-X: a large part of the code capabilities are not discussed in details or are not discussed at all!

We will use MAD-X to "visualise" the transverse dynamics concepts.

Use the MADX-Primer you received as reference for the MAD-X syntax. In this slides we summarize it to have the basic knowledge to start the hands-on session.

WHAT IS MAD-X?

- ► A general purpose beam optics and lattice program distributed for free by CERN.
- ► It is used at CERN since <25 years for machine design and simulation (PS, SPS, LHC, linacs...).</p>
- MAD-X is written in C/C++/Fortran77/Fortran90 (source code is available under CERN copyright).

Sac

A GENERAL PURPOSE BEAM OPTICS CODE

For circular machines, beam lines and linacs...

- Describe/document optics parameters from machine description.
- Design a lattice for getting the desired properties (matching).
- Simulate beam dynamics, machine imperfections and machine operation.

A GENERAL PURPOSE BEAM OPTICS CODE

MAD-X is

- multiplatforms (Linux/OSX/WIN...),
- very flexible and easy to extend,
- made for complicated applications, powerful and rather complete,
- ► mainly designed for large projects (LEP, LHC, CLIC...).

MAD-X is NOT

- (very) easy to use for beginners,
- coming with a graphical user interface.

"Hello World!" example 0000

IN LARGE PROJECTS (E.G., LHC):

- Must be able to handle machines with $\geq 10^4$ elements,
- many simultaneous MAD-X users (LHC: more than 400 around the world): need consistent database,
- if you have many machines: ideally use only one design program.

イロト イロト イヨト イヨト ニヨー

Dac

DESCRIBE AN ACCELERATOR IN MAD-X

Goals...

 Describe, optimize and simulate a machine with several thousand elements eventually with magnetic elements shared by different beams, like in colliders.

MAD-X LANGUAGE

How does MAD-X get this info? Via text (interpreter).

- ► It accepts and executes statements, expressions...,
- it can be used interactively (input from command line) or in batch (input from file),
- ► many features of a programming language (loops, if's,...).

All input statements are analysed by a parser and checked.

- ► E.g. assignments: properties of machine elements, set up of the lattice, definition of beam properties, errors...
- E.g. actions: compute lattice functions, optimize and correct the machine...

MAD-X INPUT LANGUAGE

- Strong resemblance to "C" language (but NO need for declarations and NOT case sensitive apart in expressions in inverted commas),
- free format, all statements are terminated with; (do not forget!),
- ► comment lines start with: // or ! or is between /*...*/,
- Arithmetic expressions, including basic functions (exp, log, sin, cosh...), built-in random number generators and predefined constants (speed of the light, e, π, m_p, m_e...).

In particular it is possible to use deferred assignments

- ▶ regular assignment: **a** = **b**, if **b** changes **a** does not,
- ► deferred assignment: **a** := **b**, if **b** changes **a** is updated too.

"Hello World!" example 0000

Sac

EXAMPLE: DEFERRED ASSIGNMENTS

00	EXC	0 — madx — 67×25						
MACBE16107-3:EX	0 sterbini\$ ma	đx						
+++++++++++++++++++++++++++++++++++++++								
+ MAD-X 5	.02.13 (64 bi	t, Darwin) +						
+ Support: ma	d@cern.ch, http	p://cern.ch/mad +						
+ Release d	ate: 2016.12.2	0 +						
+ Execution d	ate: 2017.09.0	4 07:14:23 +						
+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++						
X:> a=1;								
X:> b=a;								
X:> c:=a;								
X:> a=2;								
++++++ info: a	redefined							
x:> value a;		2.4						
a XiX waluo hi		2 ;						
h	_	1 •						
X:> value c:		- /						
c		2 :						
X:>								
_								
100000								

We use the **value** command to print the variables content.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

MAD-X CONVENTION

- Not case sensitive
- Elements placed along the reference orbit (variable s)
- Horizontal (assumed bending plane) and vertical variables are x and y
- Describes a local coordinate system moving along s i.e. x = y = 0 follows the curvilinear system (reference orbit)

USING FILE AS INPUT

For a large machine you may need many commands (LHC? >27000)

Better: store your input in different files: e.g. myinput.madx

\$ madx
X:> call, file= myinput.madx;

alternatively, redirection from the file into the parser (LINUX)

\$ madx< myinput.madx</pre>

WARNING: the input file has to be plain text file (ASCII)!

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

USING FILE AS INPUT

<ロト < 課 ト < 注 ト < 注 ト = 三 の < ご</p>

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

MAD INPUT STATEMENTS

- Typical assignments:
 - Properties of machine elements
 - Set up of the lattice
 - Definition of beam properties (particle type, energy, emittance ...)
- ► Typical actions:
 - Compute lattice functions, match optical parameters
 - Assignment of errors and imperfections
 - Correct machines

Recommendation: make use of the examples!

DEFINITIONS OF THE LATTICE ELEMENTS

Generic pattern to define an element:

label: keyword, attributes...;

- For a dipole magnet: MBL: SBEND, L=10.0;
- For a quadrupole magnet: MQ: QUADRUPOLE, L=3.3;
- For a sextupole magnet: MSF: SEXTUPOLE, L=1.0;

In the previous examples we considered only the L property, that is the length in meters of the element.

THE **STRENGTH** OF THE ELEMENTS

The name of the parameter that define the normalized magnetic strength of the element depends on the element type.

► For dipole (horizontal bending) magnet is *k*₀:

$$k_0 = \frac{1}{B
ho} B_y \left[\text{in m}^{-1} \right]$$

► For quadrupole magnet is *k*₁:

$$k_1 = \frac{1}{B
ho} \frac{\partial B_y}{\partial x} \left[\text{in } \text{m}^{-2} \right]$$

► For sextupole magnet is *k*₂:

$$k_2 = \frac{1}{B
ho} \frac{\partial^2 B_y}{\partial x^2} \left[\text{in } \text{m}^{-3} \right]$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − ����

INTERLUDE I

What does k_1 mean? It is related to the quad focal length ¹.

$$\frac{1}{k_1 L_{quad}} = f \tag{1}$$

Assuming $k_1 = 10^{-1} \text{ m}^{-2}$ and $L_{quad} = 10^{-1} \text{ m}$ the $f = 10^2 \text{ m}$.

¹thin lens approximation

EXAMPLE: DEFINITIONS OF ELEMENTS

► Sextupole magnet:

ksf = 0.00156;

MSF: SEXTUPOLE, K2 = ksf, L=1.0;

- Multipole magnet "thin" element ²:
 MMQ: MULTIPOLE, KNL = {k0 · l, k1 · l, k2 · l, k3 · l, ... };
- LHC dipole magnet as thick element:

```
length = 14.3;
p = 7000;
angleLHC = 8.33 * clight * length/p;
MBL: SBEND, ANGLE = angleLHC;
```

²We are going to use extensively it during the course $\rightarrow \langle B \rangle \rightarrow \langle E \rangle \rightarrow \langle E \rangle \rightarrow \langle E \rangle$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

THE LATTICE SEQUENCE

A lattice sequence is an ordered collection of machine elements. Each element has a position in the sequence that can be defined wrt the CENTRE, EXIT or ENTRY of the element and wrt the sequence start or the position of an other element:

```
label: SEQUENCE, REFER=CENTRE, L=length;
...;
...;
...here specify position of all elements...;
...;
ENDSEQUENCE;
```

"Hello World!" example 0000

EXAMPLE OF SEQUENCE: LHC (TOO TOUGH?)

• • •	🔿 sterbini — ste	rbini@lxplus030:/afs/cern.ch/eng/lhc/optics/runll/2017 — ssh lxplus.cern.ch — 128×34
	MCBWV : VCORRECTOR, L := 1.MCBWV,	<pre>Kmax := Kmax_MCBWV, Kmin := Kmin_MCBWV, Calib := Kmax_MCBWV / Imax_MCBWV;</pre>
766	MCBXV : VCORRECTOR, Lrad := 1.MCBX	7, Kmax := Kmax_MCBXV, Kmin := Kmin_MCBXV, Calib := Kmax_MCBXV / Imax_MCBXV;
767	MCBYV : VCORRECTOR, L := 1.MCBYV,	Calib := Kmax_MCBYV_4.5K / Imax_MCBYV_4.5K;
768	// VKICKER	
769	MBAW : VKICKER, L := 1.MBAW, Kmax	:= Kmax_MBAW, Kmin := Kmin_MBAW, Calib := Kmax_MBAW / Imax_MBAW;
	MBWMD : VKICKER, L := 1.MBWMD, Kma	<pre>k := Kmax_MBWMD, Kmin := Kmin_MBWMD, Calib := Kmax_MBWMD / Imax_MBWMD;</pre>
	MBXWT : VKICKER, L := 1.MBXWT, Kma	<pre>c := Kmax_MBXWT, Kmin := Kmin_MBXWT, Calib := Kmax_MBXWT / Imax_MBXWT;</pre>
772		
773	/***********************************	***************************************
774	/* LHC SEQUE	4CE */
775	/**************************************	***************************************
776		
777	LHCB1 : SEQUENCE, refer = CENTRE,	L = LHCLENGTH;
778	IP1:OMK,	at= pIP1+IP10FS.B1*DS;
779	MBAS2.1R1:MBAS2,	at= 1.5+(0-1P10FS.B1)*DS, mech_sep= 0, slot_id= 2209454,
780	TAS. 1R1: TAS,	at= 19.95+(0-IPIOFS.B1)*DS, mech_sep= 0, slot_id= 102103,
781	BPMSW.1R1.B1:BPMSW002,	at= 21.564+(0-IPIOFS.B1)*DS, mech_sep= 0, slot_id= 6080259, assembly_id= 6080224,
782	BPMSW.1R1.B1_DOROS:BPMSW002,	at= 21.564+(0-IPIOFS.B1)*DS, mech_sep= 0, slot_id= 10429420, assembly_id= 6080224,
783	BPMWK.IRI:BPMWK,	at= 21.62+(0-1910FS.B1)*DS, mecn_sep= 0, slot_id= 6080224,
784	BPMWF.AIRI.BI:BPMWF,	at= 21.724+(0-1FlOFS.B1)*DS, mecn_sep= 0, Slot_1a= 6080267, assembly_1d= 6080224,
/85	MQXA.IRI:MQXA,	at= 26.15+(0-1F10FS.B1)*DS, mech_sep= 0, slot_id= 282126, assembly_id= 102104,
/80	MCBAR.IRIIMCBAR,	at= 29.842+(0-1P10FS.B1)-DS, mech_sep= 0, slot_id= 282213, assembly_id= 102104,
787	MCBXV.IRI:MCBXV,	at= 29.842+(0-1P10FS.B1)*DS, mech_sep= 0, slot_id= 282212, assembly_id= 102104,
788	BPMS.2R1.B1:BPMS,	at= 31.523+(0-1910FS.B1)*DS, mech_sep= 0, slot_id= 241889, assembly_id= 102105,
705	MCDAR 2D1.MCDAR	$at = 34.57$ ($v=171073.51$) bs , meth_sep = 0, slot_id= 241550, assembly id= 102105, $as=102105$, $as=102105$
791	MCBAN, 2R1 MCBAN,	$at = 30.019 + (0.171076.31) - D3, mech_sep=0, slot_id=245450, assembly_id=102105,$
792	MOVE B2D1 - MOVE	at = 50.557(0-1210) $B1xDS mech some 0 slot da = 24180 assembly da = 102105$
793	TAGE 3P1+TAGE	a = 47.3(2+(0-1)) $a = 0$ $a = 0$ $a = 0$ $a = 0$ $a = 24.102$ $a = 24.103$
794	MORY 3P1 MORY	at 46 6024(0-TRIORS B1) BD moch sons 0 slot id 222127 assembly id 102106
795	MOXA . 3R1 : MOXA .	$a = 10.15 \pm (0.15 \pm 0.15) \pm 0.5$ mech sep 0, slot id= 20212, assembly id= 102106.
796	MCBXH, 3R1: MCBXH,	$a_{\pm} = 53.814 + (0 - 171078.81) + 205, mech sep= 0. slot id= 249456. assembly id= 102106.$
797	MCBXV. 3R1: MCBXV.	at= 53.814+(0-TPIOFS.B1)*DS, mech sep= 0, slot id= 249457, assembly id= 102106.
		772.0-1 23

. . .

. . .

THE WHILE INSTRUCTION

```
Very useful for periodic sequences!
```

```
qf: multipole,knl=0,kqf*lq;
qd: multipole,knl=0,kqd*lq;
ncells=10;
...
cas1: sequence, refer=centre, l=circum;
...
n=1;
```

```
WHILE (n<ncells) {
    qf: qf, at=(n-1)*lcell;
    qd: qd, at=(n-1)*lcell+0.50*lcell;
    n = n + 1;
}</pre>
```

BEAM DEFINITION & SEQUENCE ACTIVATION

Generic pattern to define the beam: label: BEAM, PARTICLE=x, ENERGY³=y,...; e.g., BEAM, PARTICLE=proton, ENERGY=7000;//in GeV

After a sequence has been read, it can be activated: USE, SEQUENCE=sequence_label; e.g., USE, SEQUENCE=lhc1;

The USE command expands the specified sequence, inserts the drift spaces and makes it active.

³It is the TOTAL energy!

DEFINITION OF OPERATIONS

Once the sequence is activated we can perform operations on it.

 Calculation of Twiss parameters around the machine (very important) in order to know, for stable sequences, their main optical parameters.
 TWISS, SEQUENCE=sequence_label;//periodic solution

TWISS, SEQUENCE=sequence_label, // periodic solution TWISS, SEQUENCE=sequence_label, betx=1;//IC solution

Production of graphical output of the main optical function (e.g., β-functions):
 PLOT, HAXIS=s, VAXIS=betx, bety;

Example TWISS, SEQUENCE=juaseq, FILE=twiss.out; PLOT, HAXIS=s, VAXIS=betx, bety, COLOUR=100;

"Hello World!" example 0000

EXAMPLE OF THE TWISS FILE

* NAME	S	BETX	BETY
\$ %s	%le	%le	%le
"OF"	1.5425	107.5443191	19.4745051
"QD"	33.5425	19.5134888	107.4973054
"OF"	65.5425	107.5443191	19.4745051
"QD"	97.5425	19.5134888	107.4973054
"QF"	129.5425	107.5443191	19.4745051
"QD"	161.5425	19.5134888	107.4973054
"QF"	193.5425	107.5443191	19.4745051
"QD"	225.5425	19.5134888	107.4973054
"QF"	257.5425	107.5443191	19.4745051
"QD"	289.5425	19.5134888	107.4973054
"QF"	321.5425	107.5443191	19.4745051
"QD"	353.5425	19.5134888	107.4973054
"QF"	385.5425	107.5443191	19.4745051
"QD"	417.5425	19.5134888	107.4973054
"QF"	449.5425	107.5443191	19.4745051
"QD"	481.5425	19.5134888	107.4973054
"QF"	513.5425	107.5443191	19.4745051
"QD"	545.5425	19.5134888	107.4973054
"QF"	577.5425	107.5443191	19.4745051
"QD"	609.5425	19.5134888	107.4973054

. . . .

. . . .

"Hello World!" example 0000

EXAMPLE OF THE GRAPHICAL OUTPUT (PS FORMAT)

MATCHING GLOBAL PARAMETERS It is possible to modify the optical parameters of the machine using the MATCHING module of MAD-X.

- Adjust magnetic strengths to get desired properties (e.g., tune Q, chromaticity dQ),
- Define the properties to match and the parameters to vary.

```
Example:

MATCH, SEQUENCE=sequence_name;

GLOBAL, Q1=26.58;//H-tune

GLOBAL, Q2=26.62;//V-tune

VARY, NAME= kqf, STEP=0.00001;

VARY, NAME = kqd, STEP=0.00001;

LMDIF, CALLS=50, TOLERANCE=1e-6;//method adopted

ENDMATCH;
```

OTHER TYPES OF MATCHING I

Local matching and performance matching:

- ► Local optical functions (insertions, local optics change),
- ► any user defined variable.

OTHER TYPES OF MATCHING II

Local matching and performance matching:

- ► Local optical functions (insertions, local optics change),
- any user defined variable.

Example:

MATCH, SEQUENCE=sequence_name; CONSTRAINT, range=#e, BETX=50; CONSTRAINT, range=#e, ALFX=-2; VARY, NAME= kqf, STEP=0.00001; VARY, NAME = kqd, STEP=0.00001; JACOBIAN, CALLS=50, TOLERANCE=1e-6; ENDMATCH;

GENERAL CONSIDERATIONS ON MAD-X SYNTAX

Input language seems heavy, but:

- ► can be interfaced to data base and to other programs (e.g., Python, MatlabTM...),
- programs exist to generate the input interactively,
- allows web based applications,
- allows interface to operating system.

MAD-X can estimate the machine performance by:

- ► studying of long term stability with multipolar component,
- taking into account the tolerances for machine elements,
- ► simulating operation of the machine (imperfections,...).

DO WE USE MAD-X FOR EVERYTHING? NO!

MAD-X is an optics program (single particle dynamics).

MAD-X has limitations where

- multi particle and multi bunch simulations are required,
- machine is not static, i.e., beam changes its own environment (space charge, instabilities, beam-beam effects...),
- requires self-consistent treatment, computation of fields and forces,
- execution speed is an issue,
- for detailed studies dedicated programs are needed, but often with I/O interface to MAD-X.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

SUGGESTED APPROACH

- THINK about the physics behind the exercise and refer to the lectures.
- SKETCH your machine and its element.
- **EVALUATE** on paper what you expect.
- ► **SIMULATE** your machine in MAD-X.
- ► INTERPRET and EXPLORE the results.

"Hello World!" input file

EX0 — vi helloWorld.madx — 94×40
/****Definition of elements***/ ffyre:QMLDNUCZ, L=1.5, ki:=kf; gdfype:QMLDNUFOLZ, L=1.5, ki:=kd;
/****Definition of the sequence****/ GoolosSROTMES, BEFER-exit, L=10; gf: gfType, at=5; gd: gdType, at=10; MUSEQUENCE;
/****Definition of the strength****/ kdr=-0.2985; kdr=-kf;
/****Definition of the beam****/ beam;
/****Activation of the sequence****/ use, sequence=fodo;
/****Operations****/ twiss, file-beforeMetching.twiss, jot, BAIIS-M, VAIIS-betx, bety, title='Before matching', colour-100, interpolate=true;
/****Netching****/ MCCT, sequence*fodo; GLOBAL, 02=.25; GLOBAL, 02=.25; VART, NAME*K, SET=0.00001; VART, NAME*K, SET=0.00001; LMDIF, CALL=50, TOLEMANCE=1e=8; NUMANCH;
twiss, file=afterMatching.twiss;
plot, HAXIS=s, VAXIS=betx, bety, title='after matching', colour=100, interpolate=true;
/****Best Regards****/ QUIT;

"Hello World!" Output (1)

•••		🚞 EX0 — -bash — 93×30		
twiss, file=beforeMate	ching.twiss;			
enter Twiss module				
iteration: 1 error: orbit: 0.000000E+00	0.000000E+00 0.000000E+00	deltap: 0.000000E+00 0.000000E+00 0.000000) DE+00 0.000000E+00	0.00000E+00
+++++ table: summ				
length	orbit	i alfa	gammatr	
10	-0			
q1	dql	betxmax	dxmax	
0.4877944671	-8.26503645	5 208.1244543		
dxrms	xcomax	xcorms	q2	
	(0.4877944671	
dq2	betymax	dymax	dyrms	
-8.26503645	208.1244543			
ycomax	ycorms	deltap	synch_1	
	0			
synch_2	synch_3	synch_4	synch_5	
	C			
nflips				
0				

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

"Hello World!" Output (2)

START LMODF: Initial Penalty Function = 0.11309242E+02 call: 4 Penalty function = 0.59659299E+01 call: 7 Penalty function = 0.231866E+00 call: 10 Penalty function = 0.39842186E+00 call: 11 Penalty function = 0.39842186E+00 call: 13 Penalty function = 0.6569391E-07 call: 19 Penalty function = 0.57923759E-16 STMMACCH; MATCE SUBMARY MATCE SUBMARY Mode_Mame Constraint Type Target Value Final Value Penalty Ciobal constraint: q1 4 2.5000000E-01 2.5000000E-01 1.46427285E-17 Ciobal constraint: q2 4 2.5000000E-01 2.5000000E-01 4.3283030EE-17 Final Penalty Function = 5.79257593e-17 Variable Final Value Initial Value Lower Limit Upper Limit 2.11022e-01 2.98500e-02 1.00000e+20 2.11022e-01 2.98500e-02 1.00000e+20 2.11022e-01 2.98500e-02 1.00000e+20			EX0 — -bash — 106×35		
Initial Penalty Function = 0.13092428402 call: 4 Penalty function = 0.59659299801 call: 10 Penalty function = 0.371818668401 call: 10 Penalty function = 0.323165338-020 call: 10 Penalty function = 0.656503918-07 call: 10 Penalty function = 0.656503918-07 call: 10 Penalty function = 0.65903918-07 call: 10 Penalty function = 0.579237598-16 #************************************	START LMDIF:				
Initial Penalty Function = 0.113092428402 call: 4 Penalty function = 0.29859298401 call: 7 Penalty function = 0.29859298401 call: 1 Penalty function = 0.298659428400 call: 1 Penalty function = 0.398621848400 call: 1 Penalty function = 0.65609318-02 call: 1 Penalty function = 0.65609318-07 resulty function = 0.579257598-16 ROMORCHY MARCE SUBGARY Rode_Mame Constraint Type Target Value Final Constraint: q1 4 2.50000000E-01 2.5000000E-01 4.32830308E-17 Final Penalty Function = 5.79257593e-17 Variable Final Value Initial Value Lower Limit Upper Limit kt 2.110228-01 2.985006-01 -1.000006-20 1.000006-20					
call: 4 Penalty function = 0.596592998+01 call: 7 Penalty function = 0.271818688+01 call: 10 Penalty function = 0.123365318-02 call: 11 Penalty function = 0.65093818-07 call: 16 Penalty function = 0.65093818-07 call: 19 Penalty function = 0.5792375878-16 rtm:rtm:rtm: Difference Constraint Type Target Value Pinal Value Penalty MACCE SUBMARY Node_Name Constraint Type Target Value Pinal Value Penalty Global constraint: gl 4 2.5000000026-01 1.664272858-17 Global constraint: gl 4 2.500000026-01 4.328303068-17 Final Penalty Function = 5.79257593e-17 5.79257593e-17 5.79257593e-17 Variable Final Value Initial Value Lower Limit Upper Limit 1.00000+20 td 2.11022e-01 2.98500e-01 1.00000+20 td 2.11022e-01 2.98500e-01 1.00000+20	Initial Penalty Function	= 0.11309242E+02			
cali: 4 Penaity function = 0.596592998+01 cali: 7 Penaity function = 0.298532898+01 cali: 10 Penaity function = 0.2985338-02 cali: 13 Penaity function = 0.65903313-02 cali: 13 Penaity function = 0.65903313-02 cali: 19 Penaity function = 0.0579337598-16 ENDMARCE: 19 Penaity function = 0.579237598-16 ENDMARCE: SUBGARY NACCE SUBGARY NACCE SUBGARY Global constraint: q1 4 2.500000008-01 2.50000008-01 1.464272858-17 Global constraint: q2 4 2.500000008-01 2.500000018-01 4.328303088-17 Final Penaity Function = 5.79237593e-17 Variable Final Value Initial Value Lower Limit Upper Limit - 2.11022e-01 2.98500e-01 -1.00000e+20 1.00000e+20					
Call: a penalty function = 0.773834084901 call: 10 Penalty function = 0.773834084901 call: 10 Penalty function = 0.73834038140 call: 11 Penalty function = 0.65093011-07 call: 18 Penalty function = 0.65093011-07 call: 19 Penalty function = 0.65093011-07 call: 19 Penalty function = 0.579257598-16 HIMDARCE SUBGARY NATCE SUBGARY Node_Name Constraint Type Target Value Final Value Penalty Constraint: q1 4 2.50000000E-01 2.5000000E-01 1.46427285E-17 Global constraint: q2 4 2.5000000E-01 2.5000000E-01 4.3283030EE-17 Final Penalty Function = 5.79257593e-17 Variable Final Value Initial Value Lower Limit Upper Limit t 2.11022e-01 2.98500e-01 -1.00000e+20 1.00000e+20			2007101		
mail () 0 Pressly function = 0.39821188-00 mail () 11 Pressly function = 0.39821188-00 cell () 13 Pressly function = 0.65039311-07 cell () 19 Pressly function = 0.65039311-07 cell () 19 Pressly function = 0.65039311-07 cell () 19 Pressly function = 0.579257598-16 #************************************	call: 4 Penalty	function = 0.39659	9695101		
coll: 13 Penalty function = 0.223255333-02 coll: 16 Penalty function = 0.65503315-07 coll: 19 Penalty function = 0.65503315-07 coll: 19 Penalty function = 0.65503315-07 call: 19 Penalty function = 0.579257598-16 ENDWARCE; ENDWARCE; ENDWARCE; NATCH SUMMARY Mode_Mame Constraint Type Target Value Final Value Penalty Global constraint: q1 4 2.500000008-01 2.60000018-01 4.328303088-17 Final Penalty Function = 5.79257593e-17 Endution = 5.79257593e-17 Variable Final Value Initial Value Lower Limit Upper Limit Endution = 2.11022e-01 2.985009-01 -1.000000+20 td 2.11022e-01 2.985009-01 -1.000000+20 1.00000+20 1.00000+20	call: 10 Penalty	function = 0.39842	148E+00		
call: 16 Penalty function = 0.66503031E-07 call: 19 Penalty function = 0.579257598-16 ++++++++++++++++++++++++++++++++++++	call: 13 Penalty	function = 0.23236	533E-02		
Call: 19 Penalty function = 0.579257598-16 extreme converged avacessefully call: 19 Penalty function = 0.579257598-16 ENDMARCE: NANCE SUMMARY Penalty Penalty MARCE SUMMARY Constraint Type Target Value Final Value Penalty Global constraint: q1 4 2.50000000E-01 2.50000001E-01 4.5427285E-17 Global constraint: q2 4 2.50000000E-01 2.50000001E-01 4.32830308E-17 Final Penalty Function = 5.79257593e-17 Variable Final Value Initial Value Lower Limit Upper Limit td 2.11022e-01 2.98500e-01 -1.00000+20	call: 16 Penalty	function = 0.66509	381E-07		
++++++++ LDDTF ended: converged successfully call: 19 Penalty function = 0.579257598-16 NATCE SUBMARY Node_Mame Constraint Type Target Value Final Value Penalty Global constraint: q1 4 2.50000000E-01 2.50000000E-01 1.46427285E-17 Global constraint: q2 4 2.50000000E-01 2.5000000E-01 4.32830308E-17 Final Penalty Function = 5.79257593e-17	call: 19 Penalty	function = 0.57925	759E-16		
Call: 19 Penalty function = 0.57923759E-16 MARCE SUMMARY MARCE SUMMARY Pinal Value Pinal Value Penalty Global constraint: q1 4 2.50000008-01 2.50000008E-01 1.46427285E-17 Global constraint: q2 4 2.50000008-01 2.5000001E-01 4.32830308E-17 Final Penalty Function = 5.79257593e-17	++++++++++ LMDIF ended:	converged successfu	11y		
BERDMARCE; MARCE SUBMARY Node_Name Constraint Type Target Value Final Value Penalty Global constraint: q1 4 2.5000000E-01 2.5000000E-01 1.46427285E-17 Global constraint: q2 4 2.5000000E-01 2.5000000E-01 4.32830308E-17 Final Penalty Function = 5.79257593e-17	call: 19 Penalty	function = 0.57925	759E-16		
NARCE SUBSIARY NOGe_Name Constraint Type Target Value Final Value Penalty Global constraint: q1 4 2.500000008-01 2.50000008-01 1.464272858-17 Global constraint: q2 4 2.500000008-01 2.500000018-01 4.328303088-17 Final Penalty Function = 5.79257593e-17 Variable Final Value Initial Value Lower Limit Upper Limit tf 2.11022e-01 2.28500e-01 -1.000000+20 1.00000+20	ENDMATCH;				
VARTER SUPRIARY Constraint Type Target Value Pinal Value Penalty Global constraint: q1 4 2.50000000E-01 2.50000000E-01 1.46427285E-17 Global constraint: q2 4 2.5000000E-01 2.5000000E-01 4.32830308E-17 Final Penalty Function = 5.79257593e-17					
Node_Name Constraint Type Target Value Final Value Penalty Global constraint: q1 4 2.500000008-01 2.50000008-01 1.464272858-17 Global constraint: q2 4 2.50000008-01 2.500000018-01 4.328303088-17 Pinal Penalty Function = 5.79257593e-17	NAMOR CIDINARY				
Node_Name Constraint Type Target Value Final Value Penalty Global constraint: q1 4 2.50000000E-01 2.5000000E-01 1.66427285E-17 Global constraint: q2 4 2.5000000E-01 2.5000000E-01 4.3283030EE-17 Final Penalty Function = 5.79257593e-17	MATCH SUMMARY				
Global constraint: gl 4 2.50000000E-01 2.50000000E-01 1.46427285E-17 Global constraint: g2 4 2.50000000E-01 2.50000001E-01 4.32830306E-17 Final Penalty Function = 5.79257593e-17 Variable Final Value Initial Value Lower Limit Upper Limit kt 2.11022e-01 2.98500e-01 1.00000+70 kt -2.11022e-01 2.98500e-01 1.00000+70	Node_Name	Constraint Type	Target Value	Final Value	Penalty
Global constraint: q2 4 2.50000000E-01 2.50000001E-01 4.32830308E-17 Final Penalty Function = 5.79257593e-17 Variable Final Value Initial Value Lower Limit Upper Limit t 2.11022e-01 2.98500e-01 1.00000+70 t 2.11022e-01 2.98500e-01 1.00000+70	Global constraint:	al 4	2.5000000E-01	2.5000000E-01	1.46427285E-17
Final Penalty Function = 5.79237593e-17 Variable Final Value Initial Value Lower Limit Upper Limit t 2.11022e-01 2.98500e-01 -1.00000e+20 1.00000e+20 va - 2.11022e-01 2.98500e-01 -1.00000e+20 1.00000e+20	Global constraint:	q2 4	2.5000000E-01	2.5000001E-01	4.32830308E-17
Final Penalty Function = 5.79257593e-17 Variable Final Value Initial Value Lower Limit Upper Limit t 2.11022e-01 2.98500e-01 -1.00000e+20 1.00000e+20 bf - 2.11022e-01 -2.98500e-01 -1.00000e+20 1.00000e+20					
Final Penalty Function = 5.79237593e-17 Variable Final Value Initial Value Lower Limit Upper Limit kf 2.11022e-01 2.98500e-01 -1.00000e+20 1.00000e+20 kf -2.11022e-01 2.98500e-01 -0.00000e+20 1.00000e+20					
Variable Final Value Initial Value Lower Limit Upper Limit kf 2.11022a-01 2.98500-01 -1.00000+70 1.00000+70 kf -2.11022a-01 2.98500-01 -1.00000+70 1.00000+70	Final Penalty Function =	5.79257593e-17			
Variable Final Value Initial Value Lower Limit Upper Limit kf 2.11022a-01 2.98500a-01 -1.000000+20 - kd -2.11022a-01 2.98500a-01 -1.000000+20 -					
Variable Final Value Initial Value Lower Limit Upper Limit kf 2.11022e-01 2.98500e-01 -1.00000e+20 1.00000e+20 kd -2.11022e-01 2.9800e-01 -1.00000e+20 1.00000e+20					
Variable Final Value Initial Value Lower Limit Upper Limit kf 2.11022e-01 2.98500e-01 -1.00000e+20 1.00000e+20 kd -2.11022e-01 2.9800e-01 -1.00000e+20 1.00000e+20					
Variable Final Value Initial Value Lower Limit Upper Limit kf 2.11022e-01 2.98500e-01 -1.00000+20 1.00000+20 kf -2.11022e-01 2.88500e-01 -1.00000+20 1.00000+20					
kf 2.11022e-01 2.98500e-01 -1.00000e+20 1.00000e+20 kd _2 11022e-01 _2 98500e-01 -1.00000e+20 1.00000e+20	Variable	Final Value Initia	l Value Lower Limit	Upper Limit	
kf 2.11022e-01 2.98500e-01 -1.00000e+20 1.00000e+20 kd11022e_01 _2.98500e_01 _1.00000e+20 1.00000e+20					
	kf	2.11022e-01 2.985	00e-01 -1.00000e+20	1.00000e+20	
	kd	-2.11022e-01 -2.985	00e-01 -1.00000e+20	1.00000e+20	

◆□ ▶ ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● ○ ○ ○

ヘロト 人間 とく ヨン くきとう

E ∽900

"Hello World!" Output (3)

•••		🚞 EX0 — -bash — 1	06×35	
enter Twiss module				
iteration: 1 error orbit: 0.000000E+00	: 0.000000E+00 d	deltap: 0.000000E+0 0.000000E+00 0.00000	00 00E+00 0.000000E+00	0.0000002+00
++++++ table: summ				
length	orbit5	alfa	gammatr	
10	-0	0	0	
q1	dq1	betxmax	dxmax	
0.250000004	-0.3176945857	14.60761372	0	
dxrms	xcomax	xcorms	q2	
0	0	0	0.250000007	
dq2	betymax	dymax	dyrms	
-0.3176945859	14.60761371	0	0	
ycomax	ycorms	deltap	synch_1	
0	0	0	0	
synch_2	synch_3	synch_4	synch_5	
0	0	0	0	
nflips				
0				
plot WAXIGES WAXIS	whether heter title	- after matching!	nolour=100 internol	atostruo
piec, mais-s, valis-	-beck, becy, citie	s- arcor matching , (colour-100, interpol	
<pre>Plot - default table plot number =</pre>	plotted: twiss 2			