Closed Orbit Correction

Theme study problem no. 2

Ziqiang Dong, <u>Helena Pikhartova</u>, Harsh Purwar, Apostolos Sounas and James Storey

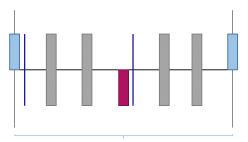
September 14, 2017

The Given Problem

CLOSED ORBIT CORRECTION

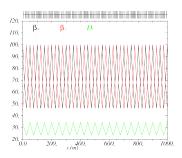
Step Zero

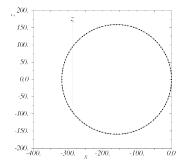
CLOSED ORBIT CORRECTION


Step Zero: A quick recap of Exercise 3

Our machine:

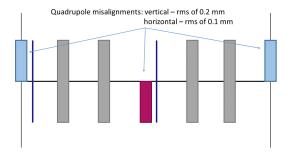
- Circumference of 1000 m
- 20 FODO cells
- Sextupoles for correcting chromaticity


Designed for:


 Proton beams with energy of 20 GeV

FODO cell – Length = 50 m

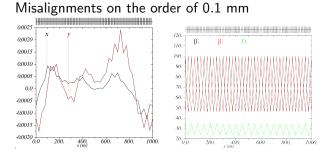
Step Zero: Results from Exercise 3

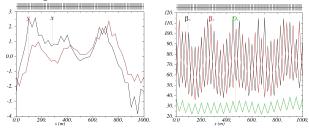

			+++++ table: summ
gammatr 2.363642811	alfa 0.1789932276		length 1000
dxməx 34.45748961	betxmax 188.8267292	dq1 2.285187207e-13	q1 2.395724244
		xcomax 0	dxrms 29. 15484919
	dymax 0	betymax 100.0267292	dq2 1. 142593684e+14
			ycontax 0
			synch_2 0

Step One

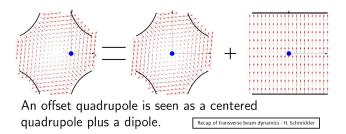
CLOSED ORBIT CORRECTION

Step One: Introduce alignment errors in quadrupoles


Misalign quadrupoles of each FODO cell randomly


In MADX:

eoption,seed=62989; select,flag=error,pattern="q.*"; ealign,dx:=tgauss(3.0)*0.1*1.0e-3,dy:=tgauss(3.0)*0.2*1.0e-3;


Step One: Changes due to misalignments

Misalignments on the order of 100 mm

Understanding what's going on...

Bigger are the misalignments, stronger will be the additional dipole kicks.

$$F_x = -k_q x \mid F_y = -k_q y$$

Step Two

CLOSED ORBIT CORRECTION

Step Two: Calculation of RMS value for the closed orbit

$$CO(s) = rac{\sqrt{eta(s)}}{2\sin(\pi Q)} \sum_i \sqrt{eta_i} heta_i \cos(\pi Q - |\phi(s) - \phi_i|)$$

with:

$$RMS\left(\sum_{i}\sqrt{\beta_{i}}\theta_{i}\cos(\pi Q - |\phi(s) - \phi_{i}|)\right) = \sqrt{\overline{\beta}}\theta_{i}^{RMS}\sqrt{2N_{Q}}$$
$$\theta_{i}^{RMS} = \text{ strength of kick } = x_{disp}^{RMS}K_{Q}L_{Q}$$
$$RMS(CO(s)) = \frac{\overline{\beta}}{2\sin(\pi Q)}x_{disp}^{RMS}K_{Q}L_{Q}\sqrt{2N_{Q}}$$

Step Two: RMS value of closed orbit Calculated RMS value:

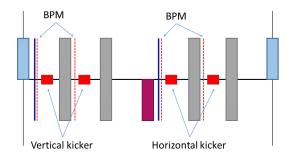
$$x^{RMS} = 4.4 \times 10^{-4} m$$

 $y^{RMS} = 8.8 \times 10^{-4} m$

Confirmation with MADX:

$$x^{RMS} = 4.9 \times 10^{-4} m$$

 $y^{RMS} = 10.1 \times 10^{-4} m$



Step Three

CLOSED ORBIT CORRECTION

Step Three: Inserting monitors and correctors

Beam position monitors and kickers were inserted in each FODO cell for misalignment corrections.

Step Four

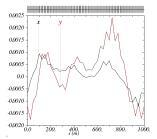
CLOSED ORBIT CORRECTION

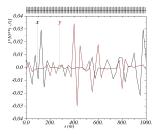
Step Four: Estimation of maximum kicker strength

Calculation for max. displacement of 1.0 mm:

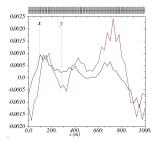
$$heta_{i}^{MAX} = x_{disp}^{MAX} K_{Q} L_{Q}$$

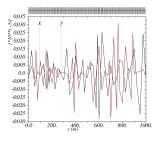
 $heta_{i}^{MAX} = 0.0294 \;\; {
m mrad}$


Confirmation with MADX:

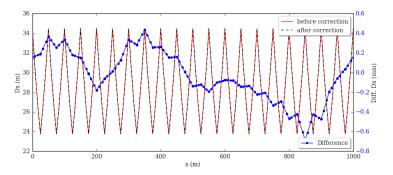

$$\theta_i^{MAX} = 0.0294 \text{ mrad }\checkmark$$

Step Five


CLOSED ORBIT CORRECTION


Step Five: Correction with BPMs & kickers (MICADO) 2 BPMs & 2 kickers per cell (CO $-X_{RMS} \& CO - Y_{RMS} \approx 10^{-6}$)

4 BPMs & 4 kickers per cell (CO- X_{RMS} & CO- $Y_{RMS} \approx 10^{-6}$)

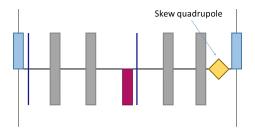


Step Six

CLOSED ORBIT CORRECTION

Step Six: Effect of alignment corrections on dispersion

The dispersion (Dx) changes only a little due to alignment corrections. The change is negligible.

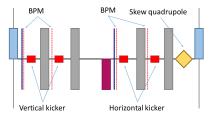


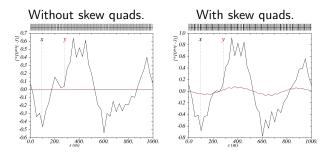
Step Seven

CLOSED ORBIT CORRECTION

Step Seven: Adding a skew quadrupole

BPMs and Kickers were switched off and a skew quadrupole was added in each FODO cell.

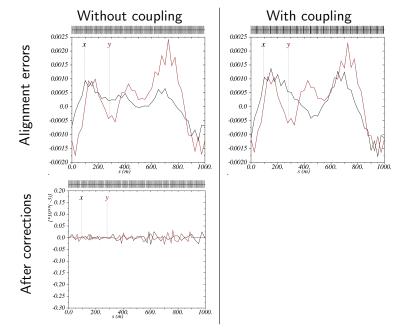

Quadrupole tilt: 0.2 rad. (11.46 deg.)


Step Eight

CLOSED ORBIT CORRECTION

Step Eight: Coupling b/w hor. & ver. planes

By adding a skew quadrupole, we obtain a coupling between the x and y planes. Introducing a misalignment in x automatically introduces an error in y.



Step Nine: The last step

CLOSED ORBIT CORRECTION

Step Nine: MAD-X orbit correction comparison

Any questions/comments?

