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Trace space of an ideal laminar beam

Trace space of a laminar beam
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Trace space of non laminar beam

Geometric emittance: € g

Ellipse equation:  yx? + 2aoex’ + fx'? = €,

Twiss parameters: By -a’ =1 B =-2a
Ellipse area. A= e,

J
/
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Fig. 17: Filamentation of mismatched beam in non-linear force

rms emittance €.l oo

fff(x,x’)dxdx’=1 f'(x,x')=0

—00 —©

rms beam envelope:
: X o? =<x2>= TTfo(x,x')dxdx’

& S O, _Mo
Define rms emittance:

‘yx2 + 2c0x + Px”’ =¢

rms

such that: o, =\(x*) = /Be,,
R W
Since: a= -% B= %
it follows:  a=——1—L(x?) (o) __ow
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It holds also the relation: vB-a’ =1
o ot o (o)
Substituting o, 3,y we get S N e |
rms ngS Erms

We end up with the definition of rms emittance in terms of the
second moments of the distribution:

e =1l == (7))~ ex))

Which distribution has no correlations?

4.0 . . | : "

0, =(xx')=-as,, =07 A B c

I

204 |

! |

I

I

x’ 0.0 ' :
-2.04 |

-4.0

-80 -60 -40 -20 0.0 20 40 60 80

X

31/08/17



What does rms emittance tell us about phase space distributions
under linear or non-linear forces acting on the beam?

X’ e = <x2 ><x’2 > - <xx’>2 o

a’ [ d a’

Assuming a generic X, X’ correlation of the type: X '=Cx"

Whenn=1 ==> ¢, =0
el )-om) <

Whenn#£1 ==> g 40

Constant under linear transformation only

d
37 FI0%) = ) = 200) (%) 4+ 20 (W) () = 24x) (xx) = 0
For linear transformations, x” = —kZ2x, and the right-hand side of the
equation is

2k2 (x?) (xx’) — 2(x?) (xx')k2 = 0,

SO d
— () (%) — (x)2 =0
dz

And without acceleration: X =
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Normalized rms emittance: ¢, .ms

. ! !
Canonical transverse momentum: P, =P X = m,cfyx D, =D

T ARl (SO E N R (G20

Liouville theorem: the density of particles n, or the volume V
occupied by a given number of particles in phase space
(x,px,y,py,z,pz) remains invariant under conservative forces.

dn _
dt

It hold also in the projected phase spaces (x,py),(¥,p,)(-Z:p,)
provided that there are no couplings

Limit of single particle emittance

Limits are set by Quantum Mechanics on the knowledge of the two
conjugate variables (x,p,). According to Heisenberg:

This limitation can be expressed by saying that the state of a particle
is not exactly represented by a point, but by a small uncertainty
volume of the order of 7i” in the 6D phase space.

In particular for a single electron in 2D phase space it holds:

| =0 classical limit
e =—|o%c* - a = 1 R, .
mrms = NT s s—— =2 19%x10"m quantum limit
° 2m,c

Where is the reduced Compton wavelength.
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OUTLINE

* The rms emittance concept

* Space charge forces
* Space charge induced emittance oscillations
* Matching conditions and emittance compensation

Envelope Equation without Acceleration

Now take the derivatives:

d d 1 d 1 , "
CZ" =d_z <X2>=2_(7xd_z<X2>=2_axz<xx>=%

2
do, |do,

X

| do, oy _ L(<x’2>+<xx’>)— ol |or+(x") ol

2 3 3 3
dz dzo, o, dz o0, o, lop o, o,
2 2 2 " 2 n
o , oot -0 (xx") | (xx")
And simplify: | o] =|=—5—+ =
OX OX O.X G.Y

We obtain the rms envelope equation in which the rms emittance
enters as defocusing pressure like term.

n 2 P2 :

" _ <xx > = Erms : Erms ~_ = Pi
3 1 3 i

O, O« o Vo
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Beam Thermodynamics

Kinetic theory of gases defines temperatures in each directions and

global as:
ks T, = m(v?) T=an+g+n)

Definition of beam temperature in analogy:

@=—m@§=%@T

2

2
2 2 22/ 1 22 2 2 2 € 2 2 &
ks Thuame = ym, (V7) (v1)= B¢ (x%)= BP0 = fPc* e = R 2
GX [))X
2

. _ 2\ _ 2 2 Emms _ 2.2 Ems
We get kBTbeam,x - ymo <vx> - ymoﬂ c 0_2 - ymaﬁ c [’)’

X

X

2

P

beam,x B* beam ,x
x

£ £
nk,T, =nym, f°c’ —a”’; = N,ym pB’c’ —

2

GL Gx

kBTbeam,x = ymuﬁZC

2 Eps

ﬂx

Property Hot beam Cold beam
ion mass (m,) heavy ion light ion
ion energy (By) high energy low energy

beam emittance (g)

large emittance

small emittance

lattice properties (yxy=1/Bxy)

high B

phase space portrait

strong focus (low B)

cold
beam

@ -

Electron Cooling: Temperature relaxation by mixing a hot ion beam with co-moving
cold (light) electron beam.
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By means of the beam temperature concept one can also define the beam emittance at the source
called thermal emittance. Assuming that electrons are in equilibrium with the cathode temperature

T=Theam and y=1 the thermal emittance is given by: ¢ =0, kT

< which, per unit rms spot size at
m,c”

the cathode, is ¢,,,,. = 0.3 um/mm at T, = 2500 K. For comparison in a photocatode illuminated by a

laser pulse with photon energy /i@ the expression for the variance of the transverse momentum of the
. . . m .

emitted electrons is given by 0, = T”(fuu—:ﬁ,”) where ¢, =9, —Pspom, » ¢, being the material

work function and ¢, the Schottky work function [19]. The corresp g thermal emitta is

ha -
=0, ':]7‘1’” that, with the typical of a Copper pl cathode illumi iby a UV
3mc”

laser, gives a thermal emittance per unit spot size of about 0.5 um/mm.

Ehrms

Envelope Equation with Linear Focusing

Assuming that each particle is subject only to a linear focusing

. . 2
force, without acceleration: x"+k x=0

X

take the average over the entire particle ensemble {xx") = —k; <x2>

2 g

” _ “rms

oL +kio, = 2
o,

We obtain the rms envelope equation with a linear focusing force
in which, unlike in the single particle equation of motion, the rms
emittance enters as defocusing pressure like term.
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* The rms emittance concept
* rms envelope equation

* Space charge induced emittance oscillations
* Matching conditions and emittance compensation

Space Charge: what does it mean?

The net effect of the Coulomb interactions in a multi-particle system can be
classified into two regimes:

1) Collisional Regime ==> dominated by binary cellisions caused by close
particle encounters ==> Single Particle Effects

2) Space Charge Regime ==> dominated by the self field produced by the
particle distribution, which varies appreciably only over large distances
compare to the average separation of the particles ==> Collective Effects

%M% @“ @
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Continuous Uniform Cylindrical Beam Model
. rtr t (.

e ([ 08

””””” Lo b

Gauss’ s law

1
- dS = E =——r for r=R
fgoE dS—fpdV " 2me,R’v
E = r 1 for r>R B
2me V1 B{)=_Er
Ampere’ s law ¢
Ir
B, = for r=R
del=‘u()f‘]dS L2 ‘uUQ,J'L'RQ
By=u,— for r>R
r

Bunched Uniform Cylindrical Beam Model

L(t)
R(t)

0.0) } I

v, =fc

Longitudinal Space Charge field in the bunch moving frame:

. 0 } _ R2nlL 7_3 }
i EZ(E,r=0)=4£ {{{ (2 9 — rdrdgd

000 (15 4

E(5,r=0) =£[\/R2 +(L-5)2 —VR? +3° +(23-L)]
0
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Radial Space Charge field in the bunch moving frame

by series representation of axisymmetric field:

3

E(r5)= L——aiE(o )]—+[ ]:6

= ~ P
E(rs)=—
(r3) =5

[ -5) N K T
\/R2+(L 52 WR2+3% |2

Lorentz Transformation to the Lab frame

E =E, L=y = p:f
E =)/E S=ys

EZ(0,5)=2L[\/R2 +y2(L=5)? —[R? +725° +y(2s—L)]
V<€

E(rs)—

(L-3s) s T
280 2

VR +y2(L=-s) \/R2+y2s2

It is still a linear field with r but with a longitudinal correlation s
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Bunched Uniform Cylindrical Beam Model

1 Ir
E(0,5,7)=————h(sy E(rsy)=—s——7—8(sY
‘ 4 ZnysoRZ[)’c ( ) Zm;",)RZ/J’c ( )

Lorentz Force

ek,

2

F =c(E, —/J’cBﬁ)=e(1—/32)Er =

is a linear function of the transverse coordinate

dp, _ F ek, elr

dt Tyl =2:ry2£0R2[5c

g(s.7)

The attractive magnetic force , which becomes significant at high velocities, tends to
compensate for the repulsive electric force. Therefore space charge defocusing is
primarily a non-relativistic effect. Using R=20, for a uniform distribution:

__ex (5.7)
: Sﬂyzeoaf,/a’cg ’
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Envelope Equation with Space Charge
Single particle transverse motion:
%=FX pxsz,=ﬁym()cxl
dt
di n_p. 4/ n_
2 \PX)=Pe(px)=F,
, F elx
X =— F=— ,
Bep Y 2my’e 00 Be 8(s:7)
k(s
x”= ¢ (Sz }y)x‘ rc=_g(s’}/)
o, =
I = dge,mc’
e

Now we can calculate the term (xx")that enters in the envelope equation

2 xx”
T I PN N
O’x Ox Gx OX

Including all the other terms the envelope equation reads:

Space Charge De-focusing Force

>
o' +k’o, = 8"2 S
P AR

\

Emittance Pressure

External Focusing Forces

Laminarity Parameter: |0 =

15



The beam undergoes two regimes along the accelerator

2 7,
oy +k‘o, = Tt =
o, O,
N
p>>1 Laminar Beam
3 \ /
v, 72 €
ov+k’o, = > 7 5
(Br) o
p<<1 Thermal Beam

e Je—%

Fig. 11: Particle trajectorics in non-zero emittance beam

Trace space evolution

No space charge => cross over

1.0 T
el
’ i,
X .
5 :
0.
-5 S =
-".'
L
F s
xp vs. |x bl
-1.04%3 B L 3. 25y 050

With space charge => no cross over

3.000 e
X’ |.:
H
1,500
0.
-1.500
-3.000 0 X 00
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OUTLINE

* The rms emittance concept
* rms envelope equation
* Space charge forces

* Matching conditions and emittance compensation

Neutral Plasma, Single Component
Cold Relativistic Plasma,
*Oscillations
* Instabilities
*EM Wave propagation

Magnetic focusing

Oooooo
o)
°,00 "0 oo o
o—
090 O oo o ©O
o ©0° o ©
o .o000 o)

i Magnetic focusing
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Surface charge density

o =-endx

Surface electric field

E, = —0/eg = —endx/ep

Restoring force

d2s
dtzx =ekEi,=—m wpz Ox

m

Plasma frequency

, mné

w =
P'gom

‘v Plasma oscillations
i
S dx = (8x)y oS (wy t)
k. (s.7) Single Component

o' +klo=

o

Equilibrium solution:

ko (5,7)
k

Geq(s’y) =

N

Small perturbation:
’o(C) =0,,(s)+ 6o(s)‘
80'(s) + Zkféo(s) =0

Relativistic Plasma

k -—4B
© 2mcPy
\ |
L]

VN - yENE
N-— -
L1
\ |

80(s)=60,(s) cos(w/zksz)

Perturbed trajectories oscillate around the equilibrium with the same frequency

but with different amplitudes:

O(s) =0, (s) + 500(s) cos(w/zkxz)

31/08/17
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Continuous solenoid channel

r  Slice orbit deviation J,(2) Actual slice orbit &(z)

* |
AN 0, (s) — N N4
1 ~~ 1 p—— \-/ R \-/ ~———— ~—
|
/O S ->
Nominal equilibrium orbit
o
eq Slice equilibrium orbit

o(s)=o0,/(s)+do, (s)cos(\/ik_yz)

Envelope oscillations drive Emittance oscillations

O(2) |.on

) - /

om0 ) 004 006 008

s =020% -0 7 = \/(<x2><x’2> - (xx’)z) ~

sin(w/zksz)

31/08/17
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Emittance Oscillations are driven by space charge differential
defocusing in core and tails of the beam

Projected Phase Space

Px

Z x  Slice Phase

Spaces

Perturbed trajectories oscillate around the
equilibrium with the

same frequency but with different amplitudes

X

’

0.006

0.004

0.002 /

0.1 0.2 0.3 0.4 05 0.6 0.7 0.8

-0.002
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OUTLINE

The rms emittance concept

* rms envelope equation

Space charge forces

Space charge induced emittance oscillations

High Brightness Photo-Injector

31/08/17
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Envelope Equation with Acceleration

x”=_mx'
By
=_@<m'>=_@a,=—@a o
By gr By

Space Charge De-focusing Force

X

B

2

n Sc

Adiabatic Damping

Other External Focusing Forces

2 3 +
(ﬂ}/) Gx OX
\

/ Emittance Pressure

Beam subject to strong acceleration

— L L L

N - - _

/ 2 2 0

£ k
o'+Llol s iy - Gyt
14 Y Yo, YO,

yrZ
We must include also the RF focusing force: ky. = 5

o 21
ksc = I_g(s’Y)
A

31/08/17
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! k2 2 o
€ k
O'” + )/ O.;C + R2F Ux - 2n 3 + 3sc
14 Y Yy Oy Y Oy
=> [{'=0

Looking for an “equilibrium” solution 04 =07
==> all terms must have the same dependence on vy

' n-1_, " n-2_12
Oy =NOLY Y Oiny = I’l(l’l - ])Goy Y
2. 12 2 2 2 2 ; 3
n-2 n-2 n- §C ,,~3-1N
n(n-1)o,y" 2y +n0,y" %y +kipoy" "t ==y
O,
n-2=-3-n=n=-—
2
' k2 82 kO
O'” +)/ O';C+ R2F Ox_ 2n3 + 3sc
14 Y Yy O, Y Oy
> [0

Looking for an “equilibrium” solution 04 =07
==> all terms must have the same dependence on vy

1 o

Laminar beam |5 1 — ;= - = o =
p 2 q ’\/;

Thermal beam [0 <</=n=0 o, =0,
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Space charge dominated beam (Laminar)
_L 2L Y — — — —
04 = y \/,; T — — —

Emittance dominated beam (Thermal)

2¢ — — — — —

y - — — —

N
_

This solution represents a beam equilibrium mode that
turns out to be the transport mode for achieving minimum
emittance at the end of the emittance correction process
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An important property of the laminar beam

o oL [2L oo [
q ,yr IAV q IA)/3
O—‘ !
Constant phase space angle: |6 = 9 __V
o 2
q
Px Px
X % 0 X
216%  2I0? 412

Laminarity parameter

Transition Energy (p=1)

rho

q

Poe? el v

22,2
Agny

21

Vir = V/IASn

€n=0.6 um
E,..=25MV/m

1000 20

00 30
T [MeV]

00 4000

5000
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Matching Conditions with a TW Linac

]

150 MeV

i

-

]

- i \/ﬁ 25 MV/m
Y VLY

. - =
35

3

rms norm. emittance [um]

25 rms beam size [mm]

2 P\
15 Ef\ \ A

NANTAN
05 [ e

0 :Gn Linac

0 2 4 6 8 10
- 2 [m]
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Emittance Compensation for a SC dominated beam:
Controlled Damping of Plasma Oscillations

* ¢, oscillations are driven by Space Charge

* propagation close to the laminar solution allows control of
g, oscillation “phase”

* g, sensitive to SC up to the transition energy
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