Introduction to Non-Linear Dynamics Yannis PAPAPHILIPPOU Accelerator and Beam Physics group Beams Department CERN

CERN Accelerator School
Advanced Accelerator Physics Course 2017
Royal Holloway University of London, Edham, UK 6 September 2017

- Books on non-linear dynamical systems
\square M. Tabor, Chaos and Integrability in Nonlinear Dynamics, An Introduction, Willey, 1989.
\square A.J Lichtenberg and M.A. Lieberman, Regular and Chaotic Dynamics, $2^{\text {nd }}$ edition, Springer 1992.
- Books on beam dynamics
\square E. Forest, Beam Dynamics - A New Attitude and Framework, Harwood Academic Publishers, 1998.
\square A. Wolski, Beam Dynamics in High Energy Particle Accelerators, Imperial College Press, 2014.
- Lectures on non-linear beam dynamics
\square A. Chao, Advanced topics in Accelerator Physics, USPAS, 2000.
\square W. Herr, Mathematical and Numerical Methods for Non-linear Beam Dynamics, CAS 2015.
\square L. Nadolski, Lectures on Non-linear beam dynamics, Master NPAC, LAL, Orsay 2013.
\square Y. Papaphilippou, Lectures on Non-linear dynamics in particles accelerators, Universita la Sapienza, Rome, Italy, June 2016.

Purpose of the Lectures

■ Introduce "historical" approaches of non-linear dynamics (i.e. classical perturbation theory)
\square Show their usefulness
\square Demonstrate their practical limitation especially in beam dynamics
\square Connect naturally with the lectures of W. Herr on "Non-linear dynamics methods and tolls" and the lectures on "Non-linear dynamics phenomenology"

Non-linear effects

- Non-linear magnets, such as chromaticity sextupoles (especially in low emittance rings), octupoles,...
■ Magnet imperfections and misalignments
- Insertion devices (wigglers, undulators) for synchrotron radiation storage rings
■ Injection elements
- Magnet fringe fields (especially in high-intensity machines)
■ Power supply ripple
- Ground motion (for e+ / e-)
- Electron (Ion) cloud
- Beam-beam effect (for colliders)
■ Space-charge effect (especially in high-intensity machines)
- Non-linear magnets, such as chromaticity sextupoles (especially in low emittance rings), octupoles,...
- Magnet imperfections and misalignments
- Insertion devices (wigglers, undulators) for synchrotron radiation storage rings
- Injection elements
- Magnet fringe fields (especially in high-intensity machines)
- Power supply ripple
- Ground motion (for e+ / e-)
- Electron (Ion) cloud
- Beam-beam effect (for colliders)
- Space-charge effect (especially in high-intensity machines)
- Performance impact
- Reduced injection efficiency (especially in low emittance rings)
- Particle losses causing
- Reduced intensity and/or beam lifetime
- Radio-activation (hands-on maintenance, equipment lifetime, super-conducting magnet quench)
- Reduced machine availability
- Emittance increase
- Reduced number of bunches and / or increased crossing angle, affecting luminosity (for colliders)
- Allow to damp instabilities (see V. Kornilov lecture on "Landau damping")
- Can be used for beam extraction

■ Non-linear magnets, such as chromaticity sextupoles (especially in low emittance rings), octupoles,...

- Magnet imperfections and misalignments
- Insertion devices (wigglers, undulators) for synchrotron radiation storage rings
- Injection elements
- Magnet fringe fields (especially in high-intensity machines)
■ Power supply ripple
- Ground motion (for e+/e-)
- Electron (Ion) cloud
- Beam-beam effect (for colliders)
- Space-charge effect (especially in high-intensity machines)

Performance impact
\square Reduced injection efficiency (especially in low emittance rings)
\square Particle losses causing

- Reduced intensity and/or beam lifetime
- Radio-activation (hands-on maintenance, equipment lifetime, super-conducting magnet quench)
- Reduced machine availability
- Emittance increase
- Reduced number of bunches and / or increased crossing angle, affecting luminosity (for colliders)
- Allow to damp instabilities (see V. Kornilov lecture on "Landau damping")
- Can be used for beam extraction
- Cost issues
\square Magnetic field quality and alignment tolerances
- Number of magnet correctors and families (power convertors)
- Design of collimation system (for colliders and high-intensity machines)

Reminder of Lagrangian and Hamiltonian formalism

\square Describe motion of particles in q_{n} coordinates (n degrees of freedom) from time t_{1} to time t_{2}
\square It can be achieved by the Lagrangian function $L\left(q_{1}, \ldots, q_{n}, \dot{q_{1}}, \ldots, \dot{q_{n}}, t\right)$ with $\left(q_{1}, \ldots, q_{n}\right)$ the generalized coordinates and $\left(\dot{q}_{1}, \ldots, \dot{q}_{n}\right)$ the generalized velocities
\square Describe motion of particles in q_{n} coordinates (n degrees of freedom) from time t_{1} to time t_{2}
\square It can be achieved by the Lagrangian function $L\left(q_{1}, \ldots, q_{n}, \dot{q_{1}}, \ldots, \dot{q_{n}}, t\right)$ with $\left(q_{1}, \ldots, q_{n}\right)$ the generalized coordinates and $\left(\dot{q}_{1}, \ldots, \dot{q_{n}}\right)$ the generalized velocities
\square The Lagrangian is defined as $L=T-V$, i.e. difference between kinetic and potential energy
The integral $W=\int L\left(q_{i}, \dot{q}_{i}, t\right) d t$ defines the action
\square Hamilton's principle: system evolves so as the action becomes
 stationary points $\delta q\left(t_{1}\right)=\delta q\left(t_{2}\right)=0$ (see appendix), the following differential equations for each degree of freedom are obtained, the Euler-Lagrange equations

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{i}}-\frac{\partial L}{\partial q_{i}}=0
$$

DIn other words, by knowing the form of the Lagrangian, the equations of motion can be derived

Lagrangian

\square For a simple force law contained in a potential function, governing motion among interacting particles, the Lagrangian is (or as Landau-Lifshitz put it "experience has shown that...")

$$
L=T-V=\sum_{i=1}^{n} \frac{1}{2} m_{i} q_{i}^{2}-V\left(q_{1}, \ldots, q_{n}\right)
$$

\square For velocity independent potentials, Lagrange equations become

$$
m_{i} \ddot{q}_{i}=-\frac{\partial V}{\partial q_{i}}
$$

i.e. Newton's equations.

From Lagrangian

\square Some disadvantages of the Lagrangian formalism:
\square No uniqueness: different Lagrangians can lead to same equations
\square Physical significance not straightforward (even its basic form given more by "experience" and the fact that it actually works that way!)
\square Lagrangian function provides in general n second order differential equations (coordinate space)
\square We already observed the advantage to move to a system of $2 n$ first order differential equations, which are more straightforward to solve (phase space)
\square These equations can be derived by the Hamiltonian of the system

The Hamiltonian of the system is defined as the Legendre transformation of the Lagrangian

$$
H(\mathbf{q}, \mathbf{p}, t)=\sum_{i} \dot{q}_{i} p_{i}-L(\underset{\partial L}{(\mathbf{q}, \dot{\mathbf{q}}, t)}
$$

where the generalised momenta are $p_{i}=\frac{\partial L}{\partial \dot{q}_{i}}$

- The generalised velocities can be expressed as a function of the generalised momenta if the previous equation is invertible, and thereby define the Hamiltonian of the system
\square Example: consider

$$
L(\mathbf{q}, \dot{\mathbf{q}})=\frac{1}{2} \sum_{i} m_{i} \dot{q}_{i}^{2}-V\left(q_{1}, \ldots, q_{n}\right)
$$

\square From this, the momentum can be determined as $p_{i}=\frac{\partial L}{\partial \dot{q}_{i}}=m \dot{q}_{i}$ which can be trivially inverted to provide the Hamiltonian

$$
H(\mathbf{q}, \mathbf{p})=\sum_{i} \frac{p_{i}^{2}}{2 m_{i}}+V\left(q_{1}, \ldots, q_{n}\right)
$$

Hamilton's equations equations of motion can be derived

 from the Hamiltonian following the same variational principle as for the Lagrangian ("least" action) but also by simply taking the differential of the Hamiltonian (see appendix)$$
\dot{q}_{i}=\frac{\partial H}{\partial p_{i}}, \quad \dot{p}_{i}=-\frac{\partial H}{\partial q}, \quad \frac{\partial L}{\partial t}=-\frac{\partial H}{\partial t}
$$

\square These are indeed $2 n+2$ equations describing the motion in the "extended" phase space $\left(q_{i}, \ldots, q_{n}, p_{1}, \ldots, p_{n}, t,-H\right)$

Properties

\square The variables $\left(q_{i}, \ldots, q_{n}, p_{1}, \ldots, p_{n}, t,-H\right)$ are called canonically conjugate (or canonical) and define the evolution of the system in phase space
\square These variables have the special property that they preserve volume in phase space, i.e. satisfy the well-known Liouville's theorem
\square The variables used in the Lagrangian do not necessarily have this property
\square Hamilton's equations can be written in vector form $\dot{\mathbf{z}}=\mathbf{J} \cdot \nabla H(\mathbf{z})$ with $\mathbf{z}=\left(q_{i}, \ldots, q_{n}, p_{1}, \ldots, p_{n}\right)$ and $\nabla=\left(\partial q_{i}, \ldots, \partial q_{n}, \partial p_{1}, \ldots, \partial p_{n}\right)$
The $2 n \times 2 n$ matrix $\mathbf{J}=\left(\begin{array}{rr}\mathbf{0} & \mathbf{I} \\ -\mathbf{I} & \mathbf{0}\end{array}\right)$ is called the symplectic matrix

Poisson

\square Crucial step in study of Hamiltonian systems is identification of integrals of motion
\square Consider a time dependent function of phase space. Its time evolution is given by

$$
\begin{aligned}
& \frac{d}{d t} f(\mathbf{p}, \mathbf{q}, t)=\sum_{i=1}^{n}\left(\frac{d q_{i}}{d t} \frac{\partial f}{\partial q_{i}}+\frac{d p_{i}}{d t} \frac{\partial f}{\partial p_{i}}\right)+\frac{\partial f}{\partial t} \\
& =\sum_{i=1}^{n}\left(\frac{\partial H}{\partial p_{i}} \frac{\partial f}{\partial q_{i}}-\frac{\partial H}{\partial q_{i}} \frac{\partial f}{\partial p_{i}}\right)+\frac{\partial f}{\partial t}=[H, f]+\frac{\partial f}{\partial t}
\end{aligned}
$$

where $[H, f]$ is the Poisson bracket of f with H
\square If a quantity is explicitly time-independent and its Poisson bracket with the Hamiltonian vanishes (i.e. commutes with the H), it is a constant (or integral) of motion (as an autonomous Hamiltonian itself)

Poisson brackets

The Poisson brackets between two functions of a set of canonical variables can be defined by the differential operator

$$
[f, g]=\sum_{i=1}^{n}\left(\frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}}-\frac{\partial g}{\partial p_{i}} \frac{\partial f}{\partial q_{i}}\right)
$$

\square From this definition, and for any three given functions, the following properties can be shown $[a f+b g, h]=a[f, h]+b[g, h], a, b \in \mathbb{R} \quad$ bilinearity

$$
[f, g]=-[g, f] \quad \text { anticommutativity }
$$

$$
\begin{gathered}
{[f,[g, h]]+[g,[h, f]]+[h,[f, g]]=0 \text { Jacobi's identity }} \\
{[f, g h]=[f, g] h+g[f, h]}
\end{gathered}
$$

\square Poisson brackets operation satisfies a Lie algebra

Canonical

 transformations\square Find a function for transforming the Hamiltonian from variable (\mathbf{q}, \mathbf{p}) to (\mathbf{Q}, \mathbf{P}) so system becomes simpler to study
\square This transformation should be canonical (or symplectic), so that the Hamiltonian properties of the system are preserved
These "mixed variable" generating functions are derived by

$$
\begin{aligned}
& F_{1}(\mathbf{q}, \mathbf{Q}): p_{i}=\frac{\partial F_{1}}{\partial q_{i}}, \quad P_{i}=-\frac{\partial F_{1}}{\partial Q_{i}} \quad F_{3}(\mathbf{Q}, \mathbf{p}): q_{i}=-\frac{\partial F_{3}}{\partial p_{i}}, \quad P_{i}=-\frac{\partial F_{3}}{\partial Q_{i}} \\
& F_{2}(\mathbf{q}, \mathbf{P}): p_{i}=\frac{\partial F_{2}}{\partial q_{i}}, \quad Q_{i}=\frac{\partial F_{2}}{\partial P_{i}} \quad F_{4}(\mathbf{p}, \mathbf{P}): q_{i}=-\frac{\partial F_{4}}{\partial p_{i}}, \quad Q_{i}=\frac{\partial F_{4}}{\partial P_{i}}
\end{aligned}
$$

\square A general non-autonomous Hamiltonian is transformed to

$$
H(\mathbf{Q}, \mathbf{P}, t)=H(\mathbf{q}, \mathbf{p}, t)+\frac{\partial F_{j}}{\partial t}, \quad j=1,2,3,4
$$

\square One generating function can be constructed by the other through Legendre transformations, e.g. $F_{2}(\mathbf{q}, \mathbf{P})=F_{1}(\mathbf{q}, \mathbf{Q})-\mathbf{Q} \cdot \mathbf{P}, \quad F_{3}(\mathbf{Q}, \mathbf{p})=F_{1}(\mathbf{q}, \mathbf{Q})-\mathbf{q} \cdot \mathbf{p}$, with the inner product define as $\mathbf{q} \cdot \mathbf{p}=\sum q_{i} p_{i}$

A fundamental property of canonical transformations is the preservation of phase space volume
This volume preservation in phase space can be represented in the old and new variables as

$$
\int \prod_{i=1}^{n} d p_{i} d q_{i}=\int \prod_{i=1}^{n} d P_{i} d Q_{i}
$$

The volume element in old and new variables are related through the Jacobian

$$
\prod_{i=1}^{n} d p_{i} d q_{i}=\frac{\partial\left(P_{1}, \ldots, P_{n}, Q_{1}, \ldots, Q_{n}\right)}{\partial\left(p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{n}\right)} \prod_{i=1}^{n} d P_{i} d Q_{i}
$$

These two relationships imply that the Jacobian of a canonical transformation should have determinant equal to 1

$$
\left|\frac{\partial\left(P_{1}, \ldots, P_{n}, Q_{1}, \ldots, Q_{n}\right)}{\partial\left(p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{n}\right)}\right|=\left|\frac{\partial\left(p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{n}\right)}{\partial\left(P_{1}, \ldots, P_{n}, Q_{1}, \ldots, Q_{n}\right)}\right|=1
$$

Examples of transformations

The transformation $Q=-p, P=q$, which interchanges conjugate variables is area preserving, as the Jacobian is

$$
\frac{\partial(P, Q)}{\partial(p, q)}=\left|\begin{array}{ll}
\frac{\partial P}{\partial p} & \frac{\partial Q}{\partial p} \\
\frac{\partial P}{\partial q} & \frac{\partial Q}{\partial q}
\end{array}\right|=\left|\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right|=1
$$

$Q=-p, \quad P=q$, which interchanges conjugate variables is area preserving, as the Jacobian is

$$
\frac{\partial(P, Q)}{\partial(p, q)}=\left|\begin{array}{ll}
\frac{\partial P}{\partial p} & \frac{\partial Q}{\partial p} \\
\frac{\partial P}{\partial q} & \frac{\partial Q}{\partial q}
\end{array}\right|=\left|\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right|=1
$$

On the other hand, the transformation from Cartesian to polar coordinates $q=P \cos Q, \quad p=P \sin Q$ is not, since

$$
\frac{\partial(q, p)}{\partial(Q, P)}=\left|\begin{array}{cc}
-P \sin Q & P \cos Q \\
\cos Q & \sin Q
\end{array}\right|=-P
$$

The transformation $Q=-p, P=q$, which interchanges conjugate variables is area preserving, as the Jacobian is

$$
\frac{\partial(P, Q)}{\partial(p, q)}=\left|\begin{array}{ll}
\frac{\partial P}{\partial p} & \frac{\partial Q}{\partial p} \\
\frac{\partial P}{\partial q} & \frac{\partial Q}{\partial q}
\end{array}\right|=\left|\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right|=1
$$

\square On the other hand, the transformation from Cartesian to polar coordinates $q=P \cos Q, \quad p=P \sin Q$ is not, since

$$
\frac{\partial(q, p)}{\partial(Q, P)}=\left|\begin{array}{cc}
-P \sin Q & P \cos Q \\
\cos Q & \sin Q
\end{array}\right|=-P
$$

There are actually "polar" coordinates that are canonical, given by $q=-\sqrt{2 P} \cos Q, p=\sqrt{2 P} \sin Q \quad$ for which

$$
\frac{\partial(q, p)}{\partial(Q, P)}=\left|\begin{array}{cc}
\sqrt{2 P} \sin Q & \sqrt{2 P} \cos Q \\
-\frac{\cos Q}{\sqrt{2 P}} & \frac{\sin Q}{\sqrt{2 P}}
\end{array}\right|=1
$$

The Relativistic Hamiltonian for electromagnetic fields
\square Neglecting self fields and radiation, motion can be described by a "single-particle" Hamiltonian

$$
\begin{array}{cl}
H(\mathbf{x}, \mathbf{p}, t)=c \sqrt{\left(\mathbf{p}-\frac{e}{c} \mathbf{A}(\mathbf{x}, t)\right)^{2}+m^{2} c^{2}}+e \Phi(\mathbf{x}, t) \\
\square \mathbf{x}=(x, y, z) & \text { Cartesian positions } \\
\square \mathbf{p}=\left(p_{x}, p_{y}, p_{z}\right) & \text { conjugate momenta } \\
\square \mathbf{A}=\left(A_{x}, A_{y}, A_{z}\right) & \text { magnetic vector potential } \\
\square \Phi & \text { electric scalar potential }
\end{array}
$$

The ordinary kinetic momentum vector is written

$$
\mathbf{P}=\gamma m \mathbf{v}=\mathbf{p}-\frac{e}{c} \mathbf{A}
$$

with \mathbf{V} the velocity vector and $\gamma=\left(1-v^{2} / c^{2}\right)^{-1 / 2}$ the relativistic factor

It is generally a 3 degrees of freedom one plus time (i.e. 4 degrees of freedom)
\square The Hamiltonian represents the total energy

$$
H \equiv E=\gamma m c^{2}+e \Phi
$$

\square The total kinetic momentum is

$$
P=\left(\frac{H^{2}}{c^{2}}-m^{2} c^{2}\right)^{1 / 2}
$$

\square Using Hamilton's equations

$$
(\dot{\mathbf{x}}, \dot{\mathbf{p}})=[(\mathbf{x}, \mathbf{p}), H]
$$

it can be shown that motion is governed by Lorentz equations
\square Making a series of canonical transformations and approximations (see appendix)
\square From Cartesian to Frenet-Serret (rotating) coordinate system (bending in the horizontal plane)
\square Changing the independent variable from time to the path length s
\square Electric field set to zero, as longitudinal (synchrotron) motion is much slower then transverse (betatron) one
\square Consider static and transverse magnetic fields
\square Rescale the momentum and move the origin to the periodic orbit
\square For the ultra-relativistic limit $\beta_{0} \rightarrow 1, \frac{1}{\beta_{0}^{2} \gamma^{2}} \rightarrow 0$
the Hamiltonian becomes

$$
\mathcal{H}\left(x, y, l, p_{x}, p_{y}, \delta\right)=(1+\delta)-e \hat{A}_{s}-\left(1+\frac{x}{\rho(s)}\right) \sqrt{(1+\delta)^{2}-p_{x}^{2}-p_{y}^{2}}
$$

$$
\text { with } \frac{P_{t}-P_{0}}{P_{0}} \equiv \delta
$$

\square Note that the Hamiltonian is non-linear even in the absence of any field component (i.e. for a drift)!
\square Last approximation: transverse momenta (rescaled to the reference momentum) are considered to be much smaller than 1, i.e. the square root can be expanded. Considering also the large machine approximation $x \ll \rho$, (dropping cubic terms), the Hamiltonian is simplified to

$$
\mathcal{H}=\frac{p_{x}^{2}+p_{y}^{2}}{2(1+\delta)}-\frac{x(1+\delta)}{\rho(s)}-e \hat{A}_{s}
$$

\square This expansion may not be a good idea, especially for low energy, small size rings

Hamiltonian

\square Considering the general expression of the the longitudinal component of the vector potential is (see appendix)
\square In curvilinear coordinates (curved elements)

$$
A_{s}=\left(1+\frac{x}{\rho(s)}\right) B_{0} \Re e \sum_{n=0}^{\infty} \frac{b_{n}+i a_{n}}{n+1}(x+i y)^{n+1}
$$

$$
A_{s}=B_{0} \Re e \sum_{n=0}^{\infty} \frac{b_{n}+i a_{n}}{n+1}(x+i y)^{n+1}
$$ with the multipole coefficients being written as

$$
a_{n}=\left.\frac{1}{B_{0} n!} \frac{\partial^{n} B_{x}}{\partial x^{n}}\right|_{x=y=0} \text { and } b_{n}=\left.\frac{1}{B_{0} n!} \frac{\partial^{n} B_{y}}{\partial x^{n}}\right|_{x=y=0}
$$

- The general non-linear Hamiltonian can be written as

$$
\mathcal{H}\left(x, y, p_{x}, p_{y}, s\right)=\mathcal{H}_{0}\left(x, y, p_{x}, p_{y}, s\right)+\sum_{k_{x}, k_{y}} h_{k_{x}, k_{y}}(s) x^{k_{x}} y^{k_{y}}
$$

with the periodic functions $h_{k_{x}, k_{y}}(s)=h_{k_{x}, k_{y}}(s+C)$

Magnetic element Hamiltonians

- Dipole:

$$
H=\frac{x \delta}{\rho}+\frac{x^{2}}{2 \rho^{2}}+\frac{p_{x}^{2}+p_{y}^{2}}{2(1+\delta)}
$$

■ Quadrupole:

$$
H=\frac{1}{2} k_{1}\left(x^{2}-y^{2}\right)+\frac{p_{x}^{2}+p_{y}^{2}}{2(1+\delta)}
$$

$$
H=\frac{1}{3} k_{2}\left(x^{3}-3 x y^{2}\right)+\frac{p_{x}^{2}+p_{y}^{2}}{2(1+\delta)}
$$

- Octupole:

$$
H=\frac{1}{4} k_{3}\left(x^{4}-6 x^{2} y^{2}+y^{4}\right)+\frac{p_{x}^{2}+p_{y}^{2}}{2(1+\delta)}
$$

Linear magnetic fields

Assume a simple case of linear transverse magnetic fields,

$$
B_{x}=b_{1}(s) y
$$

$$
B_{y}=-b_{0}(s)+b_{1}(s) x
$$

\square main bending field
\square normalized quadrupole gradient

$$
K(s)=b_{1}(s) \frac{e}{c P_{0}}=\frac{b_{1}(s)}{B \rho}\left[1 / \mathrm{m}^{2}\right]
$$

\square magnetic rigidity

$$
-B_{0} \equiv b_{0}(s)=\frac{P_{0} c}{e \rho(s)}[\mathrm{T}]
$$

$$
B \rho=\frac{P_{0} c}{e}[\mathrm{~T} \cdot \mathrm{~m}]
$$

Assume a simple case of linear transverse magnetic fields,

$$
\begin{aligned}
& B_{x}=b_{1}(s) y \\
& B_{y}=-b_{0}(s)+b_{1}(s) x
\end{aligned}
$$

\square main bending field

$$
-B_{0} \equiv b_{0}(s)=\frac{P_{0} c}{e \rho(s)}[\mathrm{T}]
$$

\square normalized quadrupole gradient

$$
K(s)=b_{1}(s) \frac{e}{c P_{0}}=\frac{b_{1}(s)}{B \rho}\left[1 / \mathrm{m}^{2}\right]
$$

\square magnetic rigidity

$$
B \rho=\frac{P_{0} c}{e}[\mathrm{~T} \cdot \mathrm{~m}]
$$

■ The vector potential has only a longitudinal component which in curvilinear coordinates is

$$
B_{x}=-\frac{1}{1+\frac{x}{\rho(s)}} \frac{\partial A_{s}}{\partial y}, \quad B_{y}=\frac{1}{1+\frac{x}{\rho(s)}} \frac{\partial A_{s}}{\partial x}
$$

- The previous expressions can be integrated to give

$$
A_{s}(x, y, s)=\frac{P_{0} c}{e}\left[-\frac{x}{\rho(s)}-\left(\frac{1}{\rho(s)^{2}}+K(s)\right) \frac{x^{2}}{2}+K(s) \frac{y^{2}}{2}\right]=P_{0} c \hat{A}_{s}(x, y, s)
$$

- The Hamiltonian for linear fields can be finally written as
$\mathcal{H}=\frac{p_{x}^{2}+p_{y}^{2}}{2(1+\delta)}-\frac{x \delta}{\rho(s)}+\frac{x^{2}}{2 \rho(s)^{2}}+\frac{K(s)}{2}\left(x^{2}-y^{2}\right)$
- Hamilton's equation are

$$
\frac{d x}{d s}=\frac{p_{x}}{1+\delta}, \frac{d p_{x}}{d s}=\frac{\delta}{\rho(s)}-\left(\frac{1}{\rho^{2}(s)}+K(s)\right) x
$$

$$
\frac{d y}{d s}=\frac{p_{y}}{1+\delta}, \frac{d p_{y}}{d s}=K(s) y
$$

and they can be written as two second order uncoupled differential equations, i.e. Hill's equations

$$
\begin{aligned}
& K_{x} \\
& x^{\prime \prime}+\frac{1}{1+\delta}\left(\sqrt{\frac{1}{\rho(s)^{2}}+K(s)}\right) x=\frac{\delta}{\rho(s)} \\
& y^{\prime \prime}-\frac{1}{1+\delta} \underbrace{K(s) y}_{K_{y}}=0 \\
& \text { with the usual solution for } \\
& \delta=0 \text { and } u=x, y \\
& u(s)=\sqrt{\epsilon \beta(s)} \cos \left(\psi(s)+\psi_{0}\right) \\
& u^{\prime}(s)=\sqrt{\frac{\epsilon}{\beta(s)}}\left(\sin \left(\psi(s)+\psi_{0}\right)+\alpha(s) \cos \left(\psi(s)+\psi_{0}\right)\right)
\end{aligned}
$$

Action-angle variables

- There is a canonical transformation to some optimal set of variables which can simplify the phase-space motion
- This set of variables are the action-angle variables

The action vector is defined as the integral $\mathbf{J}=\oint \mathbf{p} d \mathbf{q}$
over closed paths in phase space. over closed paths in phase space.

- An integrable Hamiltonian is written as a function of only the actions, i.e. $H_{0}=H_{0}(\mathbf{J})$. Hamilton's equations give $\dot{\phi}_{i}=\frac{\partial H_{0}(\mathbf{J})}{\partial J_{i}}=\omega_{i}(\mathbf{J}) \Rightarrow \phi_{i}=\omega_{i}(\mathbf{J}) t+\phi_{i 0}$ $\dot{J}_{i}=-\frac{\partial H_{0}(\mathbf{J})}{\partial \phi_{i}}=0 \Rightarrow J_{i}=$ const.

i.e. the actions are integrals of motion and the angles are evolving linearly with time, with constant frequencies which depend on the actions
- The actions define the surface of an invariant torus, topologically equivalent to the product of n circles
- Considering on-momentum motion, the Hamiltonian can be written as

$$
\mathcal{H}=\frac{p_{x}^{2}+p_{y}^{2}}{2}+\frac{K_{x}(s) x^{2}-K_{y}(s) y^{2}}{2}
$$

- The generating function from the original to action angle variables is

variables

■ Considering on-momentum motion, the Hamiltonian can be written as

$$
\mathcal{H}=\frac{p_{x}^{2}+p_{y}^{2}}{2}+\frac{K_{x}(s) x^{2}-K_{y}(s) y^{2}}{2}
$$

- The generating function from the original to action angle variables is

$$
F_{1}\left(x, y, \phi_{x}, \phi_{y} ; s\right)=-\frac{x^{2}}{2 \beta_{x}(s)}\left[\tan \phi_{x}(s)+a_{x}(s)\right]-\frac{y^{2}}{2 \beta_{y}(s)}\left[\tan \phi_{y}(s)+a_{y}(s)\right]
$$

- The old variables with respect to actions and angles are

$$
u(s)=\sqrt{2 \beta_{u}(s) J_{u}} \cos \phi_{u}(s), \quad p_{u}(s)=-\sqrt{\frac{2 J_{u}}{\beta_{u}(s)}}\left(\sin \phi_{u}(s)+\alpha_{u}(s) \cos \phi_{u}(s)\right)
$$

and the Hamiltonian takes the form

$$
\mathcal{H}_{0}\left(J_{x}, J_{y}, s\right)=\frac{J_{x}}{\beta_{x}(s)}+\frac{J_{y}}{\beta_{y}(s)}
$$

- The "time" (longitudinal position) dependence can be eliminated by the transformation to normalized coordinate
$\binom{\mathcal{U}}{\mathcal{U}^{\prime}}=\left(\begin{array}{cc}\frac{1}{\sqrt{\beta}} & 0 \\ \frac{\alpha}{\sqrt{\beta}} & \sqrt{\beta}\end{array}\right)\binom{u}{u^{\prime}} \quad$ or $\binom{\mathcal{U}}{\mathcal{U}^{\prime}}=\sqrt{2 J}\binom{\cos (\nu \phi)}{\sin (\nu \phi)}$ with $\nu=\frac{1}{2 \pi} \oint \frac{d u}{\beta(s)}$

Canonical perturbation theory

- Consider a general Hamiltonian with n degrees of freedom

$$
H(\boldsymbol{J}, \boldsymbol{\varphi}, \theta)=H_{0}(\mathbf{J})+\epsilon H_{1}(\boldsymbol{J}, \boldsymbol{\varphi}, \theta)+\mathcal{O}\left(\epsilon^{2}\right)
$$

where the non-integrable part $H_{1}(\boldsymbol{J}, \boldsymbol{\varphi}, \theta)$ is 2π-periodic on the angles φ and the "time" θ

- Provided that ϵ is sufficiently small, tori should still exist but they are distorted
- We seek a canonical transformation that could "straighten up" the tori, i.e. it could transform the non-integrable part of the Hamiltonian (at first order in ϵ) to a function only of some new actions $\bar{H}(\overline{\boldsymbol{J}})$ plus higher orders in ϵ
- This can be performed by a mixed variable close to identity generating function $S(\overline{\boldsymbol{J}}, \boldsymbol{\varphi}, \theta)=\overline{\boldsymbol{J}} \cdot \varphi+\epsilon S_{1}(\overline{\boldsymbol{J}}, \boldsymbol{\varphi}, \theta)+\mathcal{O}\left(\epsilon^{2}\right)$ for transforming old variables to new ones $(\overline{\boldsymbol{J}}, \bar{\varphi})$
- In principle, this procedure can be carried to arbitrary powers of the perturbation

Canonical perturbation theory the canonical transformation equations (slide 19), the

 the old action and new angle can be also represented by a power series in $\epsilon$$$
\begin{aligned}
& \boldsymbol{J}=\overline{\boldsymbol{J}}+\epsilon \frac{\partial S_{1}(\overline{\boldsymbol{J}}, \boldsymbol{\varphi}, \theta)}{\partial \boldsymbol{\varphi}}+\mathcal{O}\left(\epsilon^{2}\right) \quad \boldsymbol{J}=\overline{\boldsymbol{J}}+\epsilon \frac{\partial S_{1}(\overline{\boldsymbol{J}}, \overline{\boldsymbol{\varphi}}, \theta)}{\partial \bar{\varphi}}+\mathcal{O}\left(\epsilon^{2}\right) \\
& \overline{\boldsymbol{\varphi}}=\boldsymbol{\varphi}+\epsilon \frac{\partial S_{1}(\overline{\boldsymbol{J}}, \boldsymbol{\varphi}, \theta)}{\partial \overline{\boldsymbol{J}}}+\mathcal{O}\left(\epsilon^{2}\right) \quad \text { or } \quad \boldsymbol{\varphi}=\overline{\boldsymbol{\varphi}}-\epsilon \frac{\partial S_{1}(\overline{\boldsymbol{J}}, \overline{\boldsymbol{\varphi}}, \theta)}{\partial \overline{\boldsymbol{J}}}+\mathcal{O}\left(\epsilon^{2}\right)
\end{aligned}
$$ the old action and new angle can be also represented by a power series in ϵ

$\boldsymbol{J}=\overline{\boldsymbol{J}}+\epsilon \frac{\partial S_{1}(\overline{\boldsymbol{J}}, \boldsymbol{\varphi}, \theta)}{\partial \boldsymbol{\varphi}}+\mathcal{O}\left(\epsilon^{2}\right) \quad \boldsymbol{J}=\overline{\boldsymbol{J}}+\epsilon \frac{\partial S_{1}(\overline{\boldsymbol{J}}, \overline{\boldsymbol{\varphi}}, \theta)}{\partial \overline{\boldsymbol{\varphi}}}+\mathcal{O}\left(\epsilon^{2}\right)$
$\bar{\varphi}=\varphi+\epsilon \frac{\partial S_{1}(\overline{\boldsymbol{J}}, \boldsymbol{\varphi}, \theta)}{\partial \overline{\boldsymbol{J}}}+\mathcal{O}\left(\epsilon^{2}\right)$
or

■ The previous equations expressing the old as a function of the new variables assume that there is possibility to invert the equation on the left, so that $S_{1}(\overline{\boldsymbol{J}}, \overline{\boldsymbol{\varphi}}, \theta)$ becomes a function of the new variables

- The new Hamiltonian is then

$$
\bar{H}(\overline{\boldsymbol{J}}, \bar{\varphi}, \theta)=H(\boldsymbol{J}(\overline{\boldsymbol{J}}, \bar{\varphi}), \varphi(\overline{\boldsymbol{J}}, \bar{\varphi}), \theta)+\epsilon \frac{\partial S_{1}(\overline{\boldsymbol{J}}, \bar{\varphi}, \theta)}{\partial \theta}+\mathcal{O}\left(\epsilon^{2}\right)
$$

- The second term is appearing because of the "time" dependence through θ

Form of the

- The question is what is the form of the generating function that eliminates the angle dependence
\square The procedure is cumbersome (see appendix for details), but here is the final result,
${ }_{\bar{\sigma}} S(\overline{\boldsymbol{J}}, \bar{\varphi})=\overline{\boldsymbol{J}} \cdot \bar{\varphi}+\epsilon i$

$$
\sum_{\mathbf{k} \neq \mathbf{0}} \frac{H_{1 \mathbf{k}}(\overline{\mathbf{J}})}{\boldsymbol{k} \cdot \boldsymbol{\omega}(\overline{\boldsymbol{J}})+p} e^{i(\boldsymbol{k} \cdot \bar{\varphi}+p \theta)}+\mathcal{O}\left(\epsilon^{2}\right)
$$

with the frequency vector $\omega(\overline{\boldsymbol{J}})=\frac{\partial H_{0}(\overline{\boldsymbol{J}})}{\partial \overline{\boldsymbol{J}}}$ and the integers $\boldsymbol{k}, p \neq \mathbf{0}$

- If the denominator vanishes, i.e. for the resonance condition $\boldsymbol{k} \cdot \boldsymbol{\omega}(\overline{\boldsymbol{J}})+p=0$, the Fourier series coefficients (driving terms) become infinite
- It actually implies that even at first order in the perturbation parameter and in the vicinity of a resonance, it is impossible to construct a generating function for seeking some approximate integrals of motion

Problem of small denominators

 disentangling of variables becomes difficult even to 2nd order!!!- The solution was given in the late 60 s by introducing the Lie transforms (e.g. see Deprit 1969), which are algorithmic for constructing generating functions and were adapted to beam dynamics by Dragt and Finn (1976)
- On the other hand, the problem of small denominators due to resonances is not just a mathematical one. The inability to construct solutions close to a resonance has to do with the unpredictable nature of motion and the onset of chaos
- KAM theory (see appendix) developed the mathematical framework into which local solutions could be constructed provided some general conditions on the size of the perturbation and the distance of the system from resonances are satisfied
- Very difficult though to apply directly this theorem to realistic physical systems, such as a particle accelerator

Example: Perturbation treatment of a sextupole

- Consider the simple case of a periodic sextupole perturbation and restrict the study only to one plane. The Hamiltonian is written as,

$$
H\left(x, p_{x}, s\right)=\frac{p_{x}^{2}+K(s) x^{2}}{2}+\frac{K_{s}(s) x^{3}}{3}
$$

where $K(s)$ and $K_{s}(s)$ are periodic functions of time.

- Consider the simple case of a periodic sextupole perturbation and restrict the study only to one plane. The Hamiltonian is written as,

$$
H\left(x, p_{x}, s\right)=\frac{p_{x}^{2}+K(s) x^{2}}{2}+\frac{K_{s}(s) x^{3}}{3}
$$

where $K(s)$ and $K_{s}(s)$ are periodic functions of time.
■ We proceed to the transformation in action angle variables to write the Hamiltonian in the form

$$
\begin{array}{r}
H=H_{0}(J)+H_{1}(\phi, J)=\frac{J}{\beta(s)}+\frac{2 \sqrt{2} K_{s}(s)}{3}(J \beta(s))^{3 / 2} \cos ^{3} \phi \\
=\frac{J}{\beta(s)}+\frac{K_{s}(s)}{3 \sqrt{2}}(J \beta(s))^{3 / 2}(\cos 3 \phi+3 \cos \phi)
\end{array}
$$

■ The perturbation procedure implies to split the perturbation in an average part over the angles and an oscillating part

$$
\begin{aligned}
& H_{1}=\left\{\left[H_{1}\right\rangle_{\phi} ;+\left\{H_{1}\right\}=\frac{\sqrt{2} k_{2}(s)}{12}(J \beta(s))^{3 / 2}(\cos 3 \phi+3 \cos \phi)\right. \\
& \text { where }\left\langle H_{1}\right\rangle_{\varphi}=\left(\frac{1}{2 \pi}\right) \oint H_{1}(J, \varphi) d \varphi \\
& \text { and } \quad\left\{H_{1}\right\}=H_{1}-\left\langle H_{1}\right\rangle_{\boldsymbol{\varphi}} \\
& =\sum H_{1 k}(J) e^{i(k \cdot \varphi+p \theta)}
\end{aligned}
$$

■ The average part should be only a function of the action
■ Its derivative with respect to the action should provide the frequency shift (tune-shift) due to the non-linearity

- It can be shown that this quantity vanishes for a sextupole perturbation
$\left\langle\frac{\partial H_{1}(\phi, J)}{\partial J}\right\rangle_{\phi}=\frac{k_{2}(s) \beta(s)}{8 \sqrt{2} \pi}(J \beta(s))^{1 / 2} \int_{0}^{2 \pi}(\cos 3 \phi+3 \cos \phi) d \phi=0$
■ Sextupoles do not provide any tune-shift at first order
- But we know by experience that this is not true, i.e. first order perturbation theory fails to give the correct answer
- One has to go to higher order (see appendix)
- The oscillating part is then the same as the original Hamiltonian

$$
\left\{H_{1}\right\}=H_{1}-\left\langle H_{1}\right\rangle_{\bar{\phi}}=H_{1}=\frac{K_{s}(s)}{3 \sqrt{2}}(\bar{J} \beta(s))^{3 / 2}(\cos 3 \phi+3 \cos \phi)
$$

■ Following the canonical perturbation procedure the generating function is

$$
S(\bar{J}, \bar{\phi})=\bar{J} \cdot \bar{\phi}+i
$$

$$
\sum_{k, p \neq 0} \frac{H_{1 k}(\bar{J})}{k \cdot \nu(\bar{J})+p} e^{i(k \cdot \bar{\phi}+p \theta)}+\ldots
$$

- The only non-zero Fourier terms are for $k=1,3$ and $S(\bar{J}, \bar{\phi})=\bar{J} \cdot \bar{\phi}+i \frac{K_{s}(s)}{6 \sqrt{2}}(\bar{J} \beta(s))^{3 / 2} \sum_{p=-\infty}^{\infty}\left(\frac{e^{i(3 \bar{\phi}+p \theta)}}{3 \nu+p}+\frac{3 e^{i(\bar{\phi}+p \theta)}}{\nu+p}\right)$
\square We derived (with a lot of effort) the common result that sextupoles at first order excite integer and third integer resonances
- Again this is not generally true! It is known that sextupoles can drive any resonance (either if they are large enough, or if the particle is far away from the closed orbit)
■ This can be shown again by pursuing the perturbation approach to second order (as for the tune-shift)
- A useful application is to use the generating function for computing the correction to the original invariant, as the new one should be an integral of motion (at first order)

$$
J \approx \bar{J}+\frac{\partial S_{1}(\bar{J}, \varphi, \theta)}{\partial \varphi}
$$

Phase space for sextupole perturbation

- For small perturbations, the new action variable is almost an invariant but for larger ones phase space gets deformed
- Close to the integer or third integer resonance, canonical perturbation theory cannot be applied
- The solution is provided by secular perturbation theory

General accelerator Hamiltonian

- The general accelerator Hamiltonian is written as

$$
\mathcal{H}\left(x, y, p_{x}, p_{y}, s\right)=\mathcal{H}_{0}\left(x, y, p_{x}, p_{y}, s\right)+\sum_{k_{x}, k_{y}} h_{k_{x}, k_{y}}(s) x^{k_{x}} y^{k_{y}}
$$

■ The transverse coordinated can be expressed in action-angle variables as

$$
u(s)=\sqrt{\frac{J_{u} \beta_{u}(s)}{2}}\left(e^{i\left(\phi_{u}(s)+\theta_{u}(s)\right)}+e^{-i\left(\phi_{u}(s)+\theta_{u}(s)\right)}\right)
$$

■ The Hamiltonian in action-angle variables is

$$
\mathcal{H}^{\prime}\left(J_{x}, J_{y}, \phi_{x}, \phi_{y}\right)=H_{0}\left(J_{x}, J_{y}\right)+H_{1}\left(J_{x}, J_{y}, \phi_{x}, \phi_{y}\right)
$$

- The general accelerator Hamiltonian is written as

$$
\mathcal{H}\left(x, y, p_{x}, p_{y}, s\right)=\mathcal{H}_{0}\left(x, y, p_{x}, p_{y}, s\right)+\sum_{k_{x}, k_{y}} h_{k_{x}, k_{y}}(s) x^{k_{x}} y^{k_{y}}
$$

■ The transverse coordinated can be expressed in action-angle variables as

$$
u(s)=\sqrt{\frac{J_{u} \beta_{u}(s)}{2}}\left(e^{i\left(\phi_{u}(s)+\theta_{u}(s)\right)}+e^{-i\left(\phi_{u}(s)+\theta_{u}(s)\right)}\right)
$$

- The Hamiltonian in action-angle variables is

$$
\mathcal{H}^{\prime}\left(J_{x}, J_{y}, \phi_{x}, \phi_{y}\right)=H_{0}\left(J_{x}, J_{y}\right)+H_{1}\left(J_{x}, J_{y}, \phi_{x}, \phi_{y}\right)
$$

- The integrable part $H_{0}\left(J_{x}, J_{y}\right)=\frac{1}{R}\left(\nu_{x} J_{x}+\nu_{y} J_{y}\right)$
- The perturbation
$H_{1}\left(J_{x}, J_{y}, \phi_{x}, \phi_{y} ; s\right)=\sum_{k_{x}, k_{y}} J_{x}^{k_{x} / 2} J_{y}^{k_{y} / 2} \sum_{j}^{k_{x}} \sum_{l}^{k_{y}} g_{j, k, l, m}(s) e^{i\left[(j-k) \phi_{x}+(l-m) \phi_{y}\right]}$
- As the coefficients $h_{k_{x}, k_{y}}(s)$ are periodic, the perturbation can be expanded in Fourier series

$$
H_{1}\left(J_{x}, J_{y}, \phi_{x}, \phi_{y} ; \theta\right)=\sum_{k_{x}, k_{y}} J_{x}^{k_{x} / 2} J_{y}^{k_{y} / 2} \sum_{j}^{k_{x}} \sum_{l}^{k_{y}} \sum_{p=-\infty}^{\infty} g_{j, k, l, m ; p} e^{i\left[(j-k) \phi_{x}+(l-m) \phi_{y}-p \theta\right]}
$$ with the resonance driving terms

$g_{j, k, l, m ; p}=\binom{k_{x}}{j}\binom{k_{y}}{l} \frac{1}{2^{\frac{j+k+l+m}{2}}} \frac{1}{2 \pi} \oint h_{k_{x}, k_{y}}(s) \beta_{x}^{k_{x} / 2}(s) \beta_{y}^{k_{y} / 2}(s) e^{i\left[(j-k) \phi_{x}(s)+(l-m) \phi_{y}(s)+p \theta\right]}$

■ As the coefficients $h_{k_{x}, k_{y}}(s)$ are periodic, the perturbation can be expanded in Fourier series
$H_{1}\left(J_{x}, J_{y}, \phi_{x}, \phi_{y} ; \theta\right)=\sum_{k_{x}, k_{y}} J_{x}^{k_{x} / 2} J_{y}^{k_{y} / 2} \sum_{j}^{k_{x}} \sum_{l}^{k_{y}} \sum_{p=-\infty}^{\infty} g_{j, k, l, m ; p} e^{i\left((j-k) \phi_{x}+(l-m) \phi_{y}-p \theta\right)}$ with the resonance driving terms
$g_{j, k, l, m ; p}=\binom{k_{x}}{j}\binom{k_{y}}{l} \frac{1}{2^{\frac{j+k+l+m}{2}}} \frac{1}{2 \pi} \oint h_{k_{x}, k_{y}}(s) \beta_{x}^{k_{x} / 2}(s) \beta_{y}^{k_{y} / 2}(s) e^{i\left[(j-k) \phi_{x}(s)+(l-m) \phi_{y}(s)+p \theta\right]}$
\square For $n_{x}=j-k, \quad n_{y}=l-m$, resonance conditions appear for $n_{x} \nu_{x}+n_{y} \nu_{y}=p$

- Goal of accelerator design and correction systems is to minimize the resonance driving terms
\square Change magnet design so that $h_{k_{x}, k_{y}}(s)$ become smaller
\square Introduce magnetic elements capable of creating a cancelling effect
\square Sort magnets or non-linear elements in a way that phase terms are minimised
\square The general resonance conditions is $n_{x} \nu_{x}+n_{y} \nu_{y}=p$ with order $n_{x}+n_{y}$
■For all the polynomial field terms of a $2 m$-pole, the excited resonances (at first order) satisfy the condition $n_{x}+n_{y}=m$ but there are also sub-resonances for which $n_{x}+n_{y}<m$ \square For normal (erect) multi-poles, the resonances (at first order) are $\left(n_{x}, n_{y}\right)=(m, 0),(m-2, \pm 2), \ldots \quad$ whereas for skew multi-poles $\left(n_{x}, n_{y}\right)=(m-1, \pm 1),(m-3, \pm 3), \ldots$

■If perturbation is large, all resonances can be potentially excited - The resonance conditions form lines in frequency space and fill it up as the order grows (the rational numbers form a dense set inside the real numbers), but Fourier amplitudes should also decrease

\square If lattice is made out of N identical cells, and the perturbation follows the same periodicity, resulting in a reduction of the resonance conditions to the ones satisfying $\quad n_{x} \nu_{x}+n_{y} \nu_{y}=j N$
\square These are called systematic resonances - Practically, any (linear) lattice perturbation breaks super-periodicity and any random resonance can be excited
-Careful choice of the working point is necessary

- First order correction to the tunes is computed by the derivatives with respect to the action of the average part of perturbation. For a given term, $h_{k_{x}, k_{y}}(s) x^{k_{x}} y^{k_{y}}$ the leading order correction to the tunes are

$$
\begin{aligned}
& \delta \nu_{x}=\frac{J_{x}^{k_{x} / 2-1} J_{y}^{k_{y} / 2}}{4 \pi^{2}} \sum_{j}^{k_{x}} \sum_{l}^{k_{y}} \bar{g}_{j, k, l, m} \oint e^{i\left[(j-k) \phi_{x}+(l-m) \phi_{y}\right]} \\
& \delta \nu_{y}=\frac{J_{x}^{k_{x} / 2} J_{y}^{k_{y} / 2-1}}{4 \pi^{2}} \sum_{j}^{k_{x}} \sum_{l}^{k_{y}} \bar{g}_{j, k, l, m} \oint e^{i\left[(j-k) \phi_{x}+(l-m) \phi_{y}\right]}
\end{aligned}
$$

where $\bar{g}_{j, k, l, m}$ is the ${ }^{j}$ average of $g_{j, k, l, m}(s)$ around the ring.

- In the accelerator jargon if $\delta \nu_{x, y}$ is independent of the action, it is referred to as tune-shift, whereas, if it depends on the action, it is called tune-spread (or amplitude detuning)
■ At first order, $\delta \nu_{x, y}=0$, for odd multi-poles $k_{x}=j+k$, $k_{y}=l+m$ (trigonometric functions give zero averages).
- Hamiltonian formalism provides the natural framework to analyse (linear and non-linear) beam dynamics
- Canonical (symplectic) transformations enable to move from variables describing a distorted phase space to something simpler (ideally circles)
- The generating functions passing from the old to the new variables are bounded to diverge in the vicinity of resonances (emergence of chaos, see next lectures)
- Calculating this generating function with canonical perturbation theory becomes hopeless for higher orders
- Need clearly a new approach (through Lie transformations of accelerator maps) enabling derivation of the generating functions in an algorithmic way, in principle to arbitrary order (see Lectures of W. Herr)
- For real accelerator models, we have to rely on numerical integration of the equations of motion, i.e. particle tracking and methods to analyse it (see Lectures of NLD Phenomenology)
co̊ Appendix
\square The variation of the action can be written as $\delta W=\int_{t_{1}}^{t_{2}}(L(q+\delta q, \dot{q}+\delta \dot{q}, t)-L(q, \dot{q}, t)) d t=\int_{t_{1}}^{t_{2}}\left(\frac{\partial L}{\partial q} \delta q+\frac{\partial L}{\partial \dot{q}} \delta \dot{q}\right) d t$
Taking into account that $\delta \dot{q}=\frac{d \delta q}{d t}$, the $2^{\text {nd }}$ part of the integral can be integrated by parts giving

$$
\delta W=\left|\frac{\partial L}{\partial \dot{q}} \delta q\right|_{t_{1}}^{t_{2}}+\int_{t_{1}}^{t_{2}}\left(\frac{\partial L}{\partial q}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)\right) \delta q d t=0
$$

\square The first term is zero because $\delta q\left(t_{1}\right)=\delta q\left(t_{2}\right)=0$ so the second integrant should also vanish, providing the following differential equations for each degree of freedom, the Lagrange equations

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{i}}-\frac{\partial L}{\partial q_{i}}=0
$$

Derivation of Hamilton's equations

The equations of motion can be derived from the Hamiltonian following the same variational principle as for the Lagrangian ("least" action) but also by simply taking the differential of the Hamiltonian

$$
d H=\sum_{i, \prime} p_{i} d \dot{q}_{i}^{\prime}+\dot{q}_{i} d p_{i}-\underbrace{\frac{\partial L}{\partial \dot{q}_{i}^{\prime}}}_{p_{i}} \dot{d}_{\dot{q}}^{\prime} \dot{q}_{i}-\underbrace{\frac{\partial L}{\partial q_{i}}}_{\dot{p}_{i}} d q_{i}-\frac{\partial L}{\partial t} d t
$$

The equations of motion can be derived from the Hamiltonian following the same variational principle as for the Lagrangian ("least" action) but also by simply taking the differential of the Hamiltonian

$d H(q, p, t)=\sum_{i} \dot{q}_{i} d p_{i}-\dot{p}_{i} d q_{i}-\frac{\partial L}{\partial t} d t=\sum_{i} \frac{\partial H}{\partial p_{i}} d p_{i}+\frac{\partial H}{\partial q_{i}} d q_{i}+\frac{\partial H}{\partial t} d t$

- By equating terms, Hamilton's equations are derived

$$
\dot{q}_{i}=\frac{\partial H}{\partial p_{i}}, \quad \dot{p}_{i}=-\frac{\partial H}{\partial q}, \quad \frac{\partial L}{\partial t}=-\frac{\partial H}{\partial t}
$$

These are indeed $2 n+2$ equations describing the motion in the "extended" phase space $\left(q_{i}, \ldots, q_{n}, p_{1}, \ldots, p_{n}, t,-H\right)$ to transform the Cartesian coordinate system to the Frenet-Serret system moving
 to a closed curve, with path length s
The position coordinates in the two systems are connected by $\mathbf{r}=\mathbf{r}_{\mathbf{0}}(s)+X \mathbf{n}(s)+Y \mathbf{b}(s)=x \mathbf{u}_{\mathbf{x}}+y \mathbf{u}_{\mathbf{y}}+z \mathbf{u}_{\mathbf{z}}$
\square The Frenet-Serret unit vectors and their derivatives are defined as $(\mathbf{t}, \mathbf{n}, \mathbf{b})=\left(\frac{d}{d s} \mathbf{r}_{\mathbf{0}}(s),-\rho(s) \frac{d^{2}}{d s^{2}} \mathbf{r}_{\mathbf{0}}(s), \mathbf{t} \times \mathbf{n}\right)$

$$
\frac{d}{d s}\left(\begin{array}{l}
\mathbf{t} \\
\mathbf{n} \\
\mathbf{b}
\end{array}\right)=\left(\begin{array}{ccc}
0 & -\frac{1}{\rho(s)} & 0 \\
0 & 0 & \tau(s) \\
\frac{1}{\rho(s)} & 0 & -\tau(s)
\end{array}\right)\left(\begin{array}{l}
\mathbf{t} \\
\mathbf{n} \\
\mathbf{b}
\end{array}\right)
$$

with $\rho(s)$ the radius of curvature and $\tau(s)$ the torsion which vanishes in case of planar motion
\square We are seeking a canonical transformation between

$$
\begin{aligned}
(\mathbf{q}, \mathbf{p}) & \mapsto(\mathbf{Q}, \mathbf{P}) \text { or } \\
\left(x, y, z, p_{x}, p_{y}, p_{z}\right) & \mapsto\left(X, Y, s, P_{x}, P_{y}, P_{s}\right)
\end{aligned}
$$

\square The generating function is

$$
(\mathbf{q}, \mathbf{P})=-\left(\frac{\partial F_{3}(\mathbf{p}, \mathbf{Q})}{\partial \mathbf{p}}, \frac{\partial F_{3}(\mathbf{p}, \mathbf{Q})}{\partial \mathbf{Q}}\right)
$$

\square By using the relationship between the positions, the generating function is

$$
F_{3}(\mathbf{p}, \mathbf{Q})=-\mathbf{p} \cdot \mathbf{r}+\overline{F_{3}}(\mathbf{Q})=-\mathbf{p} \cdot \mathbf{r}
$$

\square for planar motion, the momenta are

$$
\mathbf{P}=\left(P_{X}, P_{Y}, P_{s}\right)=\mathbf{p} \cdot\left(\mathbf{n}, \mathbf{b},\left(1+\frac{X}{\rho}\right) \mathbf{t}\right)
$$

\square Taking into account that the vector potential is also transformed in the same way

$$
\left(A_{X}, A_{Y}, A_{s}\right)=\mathbf{A} \cdot\left(\mathbf{n}, \mathbf{b},\left(1+\frac{X}{\rho}\right) \mathbf{t}\right)
$$

the new Hamiltonian is given by
$\mathcal{H}(\mathbf{Q}, \mathbf{P}, t)=c \sqrt{\left(P_{X}-\frac{e}{c} A_{X}\right)^{2}+\left(P_{Y}-\frac{e}{c} A_{Y}\right)^{2}+\frac{\left(P_{s}-\frac{e}{c} A_{s}\right)^{2}}{\left(1+\frac{X}{\rho(s)}\right)^{2}}+m^{2} c^{2}}+e \Phi$

Changing of the independent variable

\square It is more convenient to use the path length s, instead of the time as independent variable
\square The Hamiltonian can be considered as having 4 degrees of freedom, where the $4^{\text {th }}$ "position" is time and its conjugate momentum is $P_{t}=-\mathcal{H}$

It is more convenient to use the path length s, instead of the time as independent variable
\square The Hamiltonian can be considered as having 4 degrees of freedom, where the $4^{\text {th }}$ "position" is time and its conjugate momentum is $P_{t}=-\mathcal{H}$
\square In the same way, the new Hamiltonian with the path length as the independent variable is just $P_{s}=-\tilde{\mathcal{H}}\left(X, Y, t, P_{X}, P_{Y}, P_{t}, s\right)$ with
$\tilde{\mathcal{H}}=-\frac{e}{c} A_{s}-\left(1+\frac{X}{\rho(s)}\right) \sqrt{\left(\frac{P_{t}+e \Phi}{c}\right)^{2}-m^{2} c^{2}-\left(P_{x}-\frac{e}{c} A_{X}\right)^{2}-\left(P_{Y}-\frac{e}{c} A_{Y}\right)^{2}}$
\square It can be proved that this is indeed a canonical transformation
Note the existence of the reference orbit for zero vector potential, for which $\left(X, Y, P_{X}, P_{Y}, P_{s}\right)=\left(0,0,0,0, P_{0}\right)_{68}$

Neglecting

\square Due to the fact that longitudinal (synchrotron) motion is much slower than the transverse (betatron) one, the electric field can be set to zero and the Hamiltonian is written as

$$
\tilde{\mathcal{H}}=-\frac{e}{c} A_{s}-\left(1+\frac{X}{\rho(s)}\right) \sqrt{P^{2}} \sqrt{\underbrace{\left.\frac{\mathcal{H}}{c}\right)^{2}-m^{2} c^{2}}_{c}-\left(P_{x}-\frac{e}{c} A_{X}\right)^{2}-\left(P_{Y}-\frac{e}{c} A_{Y}\right)^{2}}
$$

\square The Hamiltonian is then written as
$\tilde{\mathcal{H}}=-\frac{e}{c} A_{s}-\left(1+\frac{X}{\rho(s)}\right) \sqrt{\left(P^{2}-\left(P_{x}-\frac{e}{c} A_{X}\right)^{2}-\left(P_{Y}-\frac{e}{c} A_{Y}\right)^{2}\right.}$
\square If static magnetic fields are considered, the time dependence is also dropped, and the system is having 2 degrees of freedom + "time" (path length)
\square Due to the fact that total momentum is much larger than the transverse ones, another transformation may be considered, where the transverse momenta are rescaled

$$
\begin{aligned}
(\mathbf{Q}, \mathbf{P}) & \mapsto(\overline{\mathbf{q}}, \overline{\mathbf{p}}) \text { or } \\
\left(X, Y, t, P_{X}, P_{Y}, P_{t}\right) & \mapsto\left(\bar{x}, \bar{y}, \bar{t}, \bar{p}_{x}, \bar{p}_{y}, \bar{p}_{t}\right)=\left(X, Y,-c t, \frac{P_{X}}{P_{0}}, \frac{P_{Y}}{P_{0}},-\frac{P_{t}}{P_{0} c}\right)
\end{aligned}
$$

The new variables are indeed canonical if the Hamiltonian is also rescaled and written as
$\overline{\mathcal{H}}\left(\bar{x}, \bar{y}, \bar{t}, \bar{p}_{x}, \bar{p}_{y}, \bar{p}_{t}\right)=\frac{\tilde{\mathcal{H}}}{P_{0}}=-e \bar{A}_{s}-\left(1+\frac{\bar{x}}{\rho(s)}\right) \sqrt{\bar{p}_{t}^{2}-\frac{m^{2} c^{2}}{P_{0}}-\left(\bar{p}_{x}-e \bar{A}_{x}\right)^{2}-\left(\bar{p}_{y}-e \bar{A}_{y}\right)^{2}}$
with $\quad\left(\bar{A}_{x}, \bar{A}_{y}, \bar{A}_{z}\right)=\frac{1}{P_{0} c}\left(A_{x}, A_{y}, A_{s}\right)$
and $\quad \frac{m^{2} c^{2}}{P_{0}}=\frac{1}{\beta_{0}^{2} \gamma_{0}^{2}}$

Moving the reference

\square Along the reference trajectory $\quad \bar{p}_{t 0}=\frac{1}{\beta_{0}} \quad$ and $\left.\frac{d \bar{t}}{d s}\right|_{P=P_{0}}=\left.\frac{\partial \bar{H}}{\partial \bar{p}_{t}}\right|_{P=P_{0}}=-\bar{p}_{t 0}=-\frac{1}{\beta_{0}}$
\square It is thus useful to move the reference frame to the reference trajectory for which another canonical transformation is performed

$$
(\overline{\mathbf{q}}, \overline{\mathbf{p}}) \quad \mapsto \quad(\hat{\mathbf{q}}, \hat{\mathbf{p}}) \text { or }
$$

$\left(\bar{x}, \bar{y}, \bar{t}, \bar{p}_{x}, \bar{p}_{y}, \bar{p}_{t}\right) \quad \mapsto \quad\left(\hat{x}, \hat{y}, \hat{t}, \hat{p}_{x}, \hat{p}_{y}, \hat{p}_{t}\right)=\left(\hat{x}, \hat{y}, \bar{t}+\frac{s-s_{0}}{\beta_{0}}, \hat{p}_{x}, \hat{p}_{y}, \bar{p}_{t}-\frac{1}{\beta_{0}}\right)$
\square Along the reference trajectory $\quad \bar{p}_{t 0}=\frac{1}{\beta_{0}} \quad$ and $\left.\frac{d \bar{t}}{d s}\right|_{P=P_{0}}=\left.\frac{\partial \bar{H}}{\partial \bar{p}_{t}}\right|_{P=P_{0}}=-\bar{p}_{t 0}=-\frac{1}{\beta_{0}}$
\square It is thus useful to move the reference frame to the reference trajectory for which another canonical transformation is performed

$$
(\overline{\mathbf{q}}, \overline{\mathbf{p}}) \mapsto(\hat{\mathbf{q}}, \hat{\mathbf{p}}) \text { or }
$$

$$
\left(\bar{x}, \bar{y}, \bar{t}, \bar{p}_{x}, \bar{p}_{y}, \bar{p}_{t}\right) \mapsto\left(\hat{x}, \hat{y}, \hat{t}, \hat{p}_{x}, \hat{p}_{y}, \hat{p}_{t}\right)=\left(\hat{x}, \hat{y}, \bar{t}+\frac{s-s_{0}}{\beta_{0}}, \hat{p}_{x}, \hat{p}_{y}, \bar{p}_{t}-\frac{1}{\beta_{0}}\right)
$$

\square The mixed variable generating function is $(\hat{\mathbf{q}}, \overline{\mathbf{p}})=\left(\frac{\partial F_{2}(\overline{\mathbf{q}}, \hat{\mathbf{p}})}{\partial \hat{\mathbf{p}}}, \frac{\partial F_{2}(\overline{\mathbf{q}}, \hat{\mathbf{p}})}{\partial \overline{\mathbf{q}}}\right)$ providing

$$
\begin{aligned}
& F_{2}(\overline{\mathbf{q}}, \hat{\mathbf{p}})=\bar{x} \hat{p}_{x}+\bar{y} \hat{p}_{y}+\left(\bar{t}+\frac{s-s_{0}}{\beta_{0}}\right)\left(\hat{p}_{t}+\frac{1}{\beta_{0}}\right)
\end{aligned}
$$

\square The Hamiltonian is then
$\hat{\mathcal{H}}\left(\hat{x}, \hat{y}, \hat{t}, \hat{p}_{x}, \hat{p}_{y}, \hat{p}_{t}\right)=\frac{1}{\beta_{0}}\left(\frac{1}{\beta_{0}}+\hat{p}_{t}\right)-e \hat{A}_{s}-\left(1+\frac{\hat{x}}{\rho(s)}\right) \sqrt{\left(\hat{p}_{t}+\frac{1}{\beta_{0}}\right)^{2}-\frac{1}{\beta_{0}^{2} \gamma_{0}^{2}}-\left(\hat{p}_{x}-e \hat{A}_{x}\right)^{2}-\left(\hat{p}_{y}-e \bar{A}_{y}\right)^{2}}$

Relativistic and transverse field approximations

\square First note that $\hat{p}_{t}=\bar{p}_{t}-\frac{1}{\beta_{0}}=\bar{p}_{t}-\bar{p}_{t 0}=\frac{P_{t}-P_{0}}{P_{0}} \equiv \delta$ and $l=\hat{t}$
In the ultra-relativistic limit $\beta_{0} \rightarrow 1, \frac{1}{\beta_{0}^{2} \gamma^{2}} \rightarrow 0$
and the Hamiltonian is written as
$\mathcal{H}\left(x, y, l, p_{x}, p_{y}, \delta\right)=(1+\delta)-e \hat{A}_{s}-\left(1+\frac{x}{\rho(s)}\right) \sqrt{(1+\delta)^{2}-\left(p_{x}-e \hat{A}_{x}\right)^{2}-\left(p_{y}-e \hat{A}_{y}\right)^{2}}$ where the "hats" are dropped for simplicity

First note that $\hat{p}_{t}=\bar{p}_{t}-\frac{1}{\beta_{0}}=\bar{p}_{t}-\bar{p}_{t 0}=\frac{P_{t}-P_{0}}{P_{0}} \equiv \delta$
and $l=\hat{t}$ and $l=\hat{t}$
In the ultra-relativistic limit $\beta_{0} \rightarrow 1, \frac{1}{\beta_{0}^{2} \gamma^{2}} \rightarrow 0$
and the Hamiltonian is written as
$\mathcal{H}\left(x, y, l, p_{x}, p_{y}, \delta\right)=(1+\delta)-e \hat{A}_{s}-\left(1+\frac{x}{\rho(s)}\right) \sqrt{(1+\delta)^{2}-\left(p_{x}-e \hat{A}_{x}\right)^{2}-\left(p_{y}-e \hat{A}_{y}\right)^{2}}$ where the "hats" are dropped for simplicity
口If we consider only transverse field components, the vector potential has only a longitudinal component and the Hamiltonian is written as
$\mathcal{H}\left(x, y, l, p_{x}, p_{y}, \delta\right)=(1+\delta)-e \hat{A}_{s}-\left(1+\frac{x}{\rho(s)}\right) \sqrt{(1+\delta)^{2}-p_{x}^{2}-p_{y}^{2}}$
DNote that the Hamiltonian is non-linear even in the absence of any field component (i.e. for a drift)!

High-energy, large

\square It is useful for study purposes (especially for finding an "integrable" version of the Hamiltonian) to make an extra approximation
\square For this, transverse momenta (rescaled to the reference momentum) are considered to be much smaller than 1, i.e. the square root can be expanded.
\square Considering also the large machine approximation $x \ll \rho$, (dropping cubic terms), the Hamiltonian is simplified to

$$
\mathcal{H}=\frac{p_{x}^{2}+p_{y}^{2}}{2(1+\delta)}-\frac{x(1+\delta)}{\rho(s)}-e \hat{A}_{s}
$$

\square This expansion may not be a good idea, especially for low energy, small size rings

First note that $\hat{p}_{t}=\bar{p}_{t}-\frac{1}{\beta_{0}}=\bar{p}_{t}-\bar{p}_{t 0}=\frac{P_{t}-P_{0}}{P_{0}} \equiv \delta$ and $l=\hat{t}$
In the ultra-relativistic limit $\beta_{0} \rightarrow 1, \frac{1}{\beta_{0}^{2} \gamma^{2}} \rightarrow 0$
and the Hamiltonian is written as
位 $\mathcal{H}\left(x, y, l, p_{x}, p_{y}, \delta\right)=(1+\delta)-e \hat{A}_{s}-\left(1+\frac{x}{\rho(s)}\right) \sqrt{(1+\delta)^{2}-\left(p_{x}-e \hat{A}_{x}\right)^{2}-\left(p_{y}-e \hat{A}_{y}\right)^{2}}$ where the "hats" are dropped for simplicity
OIf we consider only transverse field components, the vector potential has only a longitudinal component and the Hamiltonian is written as
$\mathcal{H}\left(x, y, l, p_{x}, p_{y}, \delta\right)=(1+\delta)-e \hat{A}_{s}-\left(1+\frac{x}{\rho(s)}\right) \sqrt{(1+\delta)^{2}-p_{x}^{2}-p_{y}^{2}}$
\square Note that the Hamiltonian is non-linear even in the absence of any field component (i.e. for a drift)!

Magnetic multipole

- From Gauss law of magnetostatics, a vector potential exist

$$
\nabla \cdot \mathbf{B}=0 \quad \rightarrow \quad \exists \mathbf{A}: \quad \mathbf{B}=\nabla \times \mathbf{A}
$$

■ Assuming transverse 2D field, vector potential has only one component A_{s}. The Ampere's law in vacuum (inside the beam pipe) $\nabla \times \mathbf{B}=0 \quad \rightarrow \quad \exists V: \quad \mathbf{B}=-\nabla V$

- Using the previous equations, the relations between field components and potentials are

$$
B_{x}=-\frac{\partial V}{\partial x}=\frac{\partial A_{s}}{\partial y}, \quad B_{y}=-\frac{\partial V}{\partial y}=-\frac{\partial A_{s}}{\partial x}
$$

i.e. Riemann conditions of an analytic function

Exists complex potential of $z=x+i y$ power series expansion convergent in a circle with radius $|z|=r_{c}$ (distance from iron yoke)

$$
\mathcal{A}(x+i y)=A_{s}(x, y)+i V(x, y)=\sum_{n=1}^{\infty} \kappa_{n} z^{n}=\sum_{n=1}^{\infty}\left(\lambda_{n}+i \mu_{n}\right)(x+i y)^{n}
$$

■ From the complex potential we can derive the fields
$B_{y}+i B_{x}=-\frac{\partial}{\partial x}\left(A_{s}(x, y)+i V(x, y)\right)=-\sum_{n=1}^{\infty} n\left(\lambda_{n}+i \mu_{n}\right)(x+i y)^{n-1}$
■ Setting $b_{n}=-n \lambda_{n}, \quad a_{n}=n \mu_{n}$

$$
B_{y}+i B_{x}=\sum_{n=1}\left(b_{n}-i a_{n}\right)(x+i y)^{n-1}
$$

■ Define normalized coefficients

$$
b_{n}^{\prime}=\frac{b_{n}}{10^{-4} B_{0}} r_{0}^{n-1}, a_{n}^{\prime}=\frac{a_{n}}{10^{-4} B_{0}} r_{0}^{n-1}
$$

on a reference radius $r_{0}, 10^{-4}$ of the main field to get

$$
B_{y}+i B_{x}=10^{-4} B_{0} \sum_{n=1}^{\infty}\left(b_{n}^{\prime}-i a_{n}^{\prime}\right)\left(\frac{x+i y}{r_{0}}\right)^{n-1}
$$

■ Note: $n^{\prime}=n-1$ is the US convention to leading order in ϵ

$$
\begin{gathered}
H_{0}(\boldsymbol{J}(\overline{\boldsymbol{J}}, \bar{\varphi}))=H_{0}(\overline{\boldsymbol{J}})+\epsilon \frac{\partial H_{0}(\overline{\boldsymbol{J}})}{\partial \overline{\boldsymbol{J}}} \frac{\partial S_{1}(\overline{\boldsymbol{J}}, \overline{\boldsymbol{\varphi}}, \theta)}{\partial \overline{\boldsymbol{\varphi}}}+\mathcal{O}\left(\epsilon^{2}\right)
\end{gathered}
$$

$\epsilon H_{1}(\boldsymbol{J}(\bar{J}, \bar{\varphi}), \varphi(\bar{J}, \bar{\varphi}), \theta)=\epsilon H_{1}(\overline{\boldsymbol{J}}, \bar{\varphi})+\mathcal{O}\left(\epsilon^{2}\right)$

- The new Hamiltonian can also be expanded in orders of ϵ

$$
\bar{H}=\bar{H}_{0}+\epsilon \bar{H}_{1}+\ldots
$$

■ Equating the terms of equal orders in ϵ, we obtain

- Zero order $\bar{H}_{0}=H_{0}(\overline{\boldsymbol{J}})$
\square First order $\bar{H}_{1}=\frac{\partial S_{1}(\overline{\boldsymbol{J}}, \overline{\boldsymbol{\varphi}}, \theta)}{\partial \theta}+\omega(\overline{\boldsymbol{J}}) \cdot \frac{\partial S_{1}(\overline{\boldsymbol{J}}, \overline{\boldsymbol{\varphi}}, \theta)}{\partial \bar{\varphi}}+H_{1}(\overline{\boldsymbol{J}}, \overline{\boldsymbol{\varphi}})$ where the frequency vector is $\boldsymbol{\omega}(\overline{\boldsymbol{J}})=\frac{\partial H_{0}(\overline{\boldsymbol{J}})}{\partial \overline{\boldsymbol{J}}}$

From the first order Hamiltonian, the angles have to be eliminated. For this purpose, it can be split in two parts:
\square Average part: $\left\langle H_{1}\right\rangle_{\overline{\boldsymbol{\varphi}}}=\left(\frac{1}{2 \pi}\right)^{n} \oint H_{1}(\overline{\boldsymbol{J}}, \overline{\boldsymbol{\varphi}}) d \overline{\boldsymbol{\varphi}}$
\square Oscillating part: $\left\{H_{1}\right\}=H_{1}-\left\langle H_{1}\right\rangle_{\bar{\varphi}}$
■ The $1^{\text {st }}$ order perturbation part of the Hamiltonian then becomes

$$
\bar{H}_{1}=\frac{\partial S_{1}(\overline{\boldsymbol{J}}, \bar{\varphi}, \theta)}{\partial \theta}+\boldsymbol{\omega}(\overline{\boldsymbol{J}}) \cdot \frac{\partial S_{1}(\overline{\boldsymbol{J}}, \bar{\varphi}, \theta)}{\partial \bar{\varphi}_{\boldsymbol{\varphi}}}+\left\langle H_{1}(\overline{\boldsymbol{J}}, \overline{\boldsymbol{\varphi}})\right\rangle_{\overline{\boldsymbol{\varphi}}}+\left\{H_{1}(\overline{\boldsymbol{J}}, \bar{\varphi})\right\}
$$

■ Thus, the generating function should be chosen such that the angle dependence is eliminated, for which
$\bar{H}_{1}(\overline{\boldsymbol{J}})=\left\langle H_{1}(\overline{\boldsymbol{J}}, \bar{\varphi})\right\rangle_{\bar{\varphi}}$ and $\frac{\partial S_{1}(\overline{\boldsymbol{J}}, \bar{\varphi}, \theta)}{\partial \theta}+\boldsymbol{\omega}(\overline{\boldsymbol{J}}) \cdot \frac{\partial S_{1}(\overline{\boldsymbol{J}}, \bar{\varphi}, \theta)}{\partial \bar{\varphi}}=-\left\{H_{1}(\overline{\boldsymbol{J}}, \overline{\boldsymbol{\varphi}})\right\}$
\square The new Hamiltonian is a function of the new actions

$$
\bar{H}(\overline{\boldsymbol{J}})=H_{0}(\overline{\boldsymbol{J}})+\epsilon\left\langle H_{1}(\overline{\boldsymbol{J}}, \overline{\boldsymbol{\varphi}})\right\rangle_{\overline{\boldsymbol{\varphi}}}+\mathcal{O}\left(\epsilon^{2}\right) \quad \text { with the }
$$

new frequency vector

$$
\overline{\boldsymbol{\omega}}(\overline{\boldsymbol{J}})=\frac{\partial \bar{H}(\overline{\boldsymbol{J}})}{\partial \overline{\boldsymbol{J}}}=\boldsymbol{\omega}(\overline{\boldsymbol{J}})+\epsilon \frac{\partial\left\langle H_{1}(\overline{\boldsymbol{J}}, \bar{\varphi})\right\rangle_{\bar{\varphi}}}{\partial \overline{\boldsymbol{J}}}+\mathcal{O}\left(\epsilon^{2}\right)
$$

Form of the

- The question that remains to be answered is whether a generating function can be found that eliminates the angle dependence
- The oscillating part of the perturbation and the generating function can be expanded in Fourier series

$$
\left\{H_{1}(\overline{\boldsymbol{J}}, \overline{\boldsymbol{\varphi}})\right\}=\sum_{\boldsymbol{k}, p} H_{1 \mathbf{k}}(\overline{\boldsymbol{J}}) e^{i(\boldsymbol{k} \cdot \bar{\varphi}+p \theta)} \quad S_{1}(\overline{\boldsymbol{J}}, \overline{\boldsymbol{\varphi}}, \theta)=\sum_{\boldsymbol{k}, p} S_{1 \mathbf{k}}(\overline{\boldsymbol{J}}) e^{i(\boldsymbol{k} \cdot \bar{\varphi}+p \theta)}
$$

$$
\text { with } \quad \boldsymbol{k} \cdot \overline{\boldsymbol{\varphi}}=k_{1} \bar{\varphi}_{1}+\cdots+k_{n} \overline{\varphi_{n}}
$$

- Following the relationship for the angle elimination, the Fourier coefficients of the generating function should satisfy

$$
S_{1 k}(\overline{\boldsymbol{J}})=i \frac{H_{1 k}(\overline{\boldsymbol{J}})}{\boldsymbol{k} \cdot \boldsymbol{\omega}(\overline{\boldsymbol{J}})+p} \quad \text { with } \quad \boldsymbol{k}, p \neq \mathbf{0}
$$

- Then, the generating function can be written as

$$
S(\overline{\boldsymbol{J}}, \overline{\boldsymbol{\varphi}})=\overline{\boldsymbol{J}} \cdot \overline{\boldsymbol{\varphi}}+\epsilon i \sum_{\mathbf{k} \neq \mathbf{0}} \frac{H_{1 \mathbf{k}}(\overline{\mathbf{J}})}{\boldsymbol{k} \cdot \boldsymbol{\omega}(\overline{\boldsymbol{J}})+p} e^{i(\boldsymbol{k} \cdot \overline{\boldsymbol{\varphi}}+p \theta)}+\mathcal{O}\left(\epsilon^{2}\right)
$$

■ Original idea of Kolmogorov (1954) (super-convergent series expansion) later proved by Arnold (1963) and Moser (1962)
■ If a Hamiltonian system is subjected to weak nonlinear perturbation, some invariant tori are deformed and survive

- Trajectories starting on one of these tori remain on it thereafter, executing quasi-periodic motion with a fixed frequency vector depending only on the torus.
- The family of tori is parameterized over a Cantor set of frequency vectors, while in the gaps of the Cantor set chaotic behavior can occur
- The KAM theorem specifies quantitatively the size of the perturbation for this to be true.
■ The KAM tori that survive are those that have "sufficiently irrational" frequencies
■ The conditions of the KAM theorem become increasingly difficult to satisfy for systems with more degrees of freedom. As the number of dimensions of the system increases, the volume occupied by the tori decreases
- A complement of KAM theory for the stability of dynamical systems were given by Nekhoroshev (1971) who proved that if the density of tori is large all solutions will stay close to the tori for exponentially long times showing practical stability of motion

- It can be shown that at second order in perturbation theory the Hamiltonian depending only on the actions can be written

$$
\bar{H}_{2}(\bar{J})=\left\langle\frac{1}{2} \frac{\partial^{2} H_{0}}{\partial \bar{J}^{2}}\left(\frac{\partial S_{1}}{\partial \phi}\right)^{2}+\frac{\partial H_{1}}{\partial \bar{J}} \frac{\partial S_{1}}{\partial \phi}\right\rangle_{\phi}
$$

■ This can be simplified to $\bar{H}_{2}(\bar{J})=\left\langle\frac{\partial H_{1}}{\partial \bar{J}} \frac{\partial S_{1}}{\partial \phi}\right\rangle_{\phi}$
■ The two terms are $\frac{\partial H_{1}}{\partial \bar{J}}=\frac{K_{s}(s)}{2 \sqrt{2}} \bar{J}^{1 / 2} \beta(s)^{3 / 2}(\cos 3 \phi+3 \cos \phi)$ $\frac{\partial S_{1}}{\partial \phi}=-\frac{\bar{J}^{3 / 2}}{2 \sqrt{2}} \int_{s}^{s+C}{ }_{K_{s}\left(s^{\prime}\right) \beta\left(s^{\prime}\right)^{3 / 2}}\left[\frac{\cos \left(\phi+\psi\left(s^{\prime}\right)-\psi(s)-\pi \nu\right)}{\sin (\pi \nu)}+\frac{\cos 3\left(\phi+\psi\left(s^{\prime}\right)-\psi(s)-\pi \nu\right)}{\sin (3 \pi \nu)}\right] d s^{\prime}$

- The $2^{\text {nd }}$ order Hamiltonian is given by the angle-averaged product of the last two terms.
- It is quadratic in the sextupole strength and the new action. The $2^{\text {nd }}$ order tune-shift is the derivative in the action

$$
\nu(\bar{J})=\left\langle\frac{\partial H_{2}}{\partial \bar{J}}\right\rangle_{\phi, s}=-\frac{\bar{J}}{16 \pi} \int_{0}^{C} d s K_{s}(s) \beta(s)^{3 / 2} \int_{s}^{s+C} K_{s}\left(s^{\prime}\right) \beta\left(s^{\prime}\right)^{3 / 2}
$$

$$
\times\left[\frac{\cos \left(\phi+\psi\left(s^{\prime}\right)-\psi(s)-\pi \nu\right)}{\sin (\pi \nu)}+\frac{\cos 3\left(\phi+\psi\left(s^{\prime}\right)-\psi(s)-\pi \nu\right)}{\sin (3 \pi \nu)}\right] d s_{83}^{\prime}
$$

- Expand both the perturbation and generating function in Fourier series of the form
$S_{1}(\bar{J}, \bar{\phi}, \theta)=\sum_{k} S_{1 k}(\bar{J}, \theta) e^{i k \bar{\phi}}$ and $\left\{H_{1}(\bar{J}, \bar{\phi}, \theta)\right\}=\sum_{k} H_{1 k}(\bar{J}, \theta) e^{i k \bar{\phi}}$
- The equation relating the amplitudes is
which can be solved yielding

$$
i k \nu S_{1 k}+\frac{\partial S_{1 k}}{\partial \theta}=-H_{1 k}
$$

$$
S_{1 k}=\frac{i}{2 \sin (\pi k \nu)} \int_{\theta}^{\theta+2 \pi} H_{1 k} e^{i k \nu\left(\theta^{\prime}-\theta-\pi\right)} d \theta^{\prime}
$$

\square Expand both the perturbation and generating function in Fourier series of the form

$$
S_{1}(\bar{J}, \bar{\phi}, \theta)=\sum_{k} S_{1 k}(\bar{J}, \theta) e^{i k \bar{\phi}} \text { and }\left\{H_{1}(\bar{J}, \bar{\phi}, \theta)\right\}=\sum_{k} H_{1 k}(\bar{J}, \theta) e^{i k \bar{\phi}}
$$

■ The equation relating the amplitudes is
which can be solved yielding

$$
i k \nu S_{1 k}+\frac{\partial S_{1 k}}{\partial \theta}=-H_{1 k}
$$

$$
S_{1 k}=\frac{i}{2 \sin (\pi k \nu)} \int_{\theta}^{\theta+2 \pi} H_{1 k} e^{i k \nu\left(\theta^{\prime}-\theta-\pi\right)} d \theta^{\prime}
$$

■ Following the canonical perturbation procedure the generating function is

$$
S_{1}=\sum_{k} \frac{i}{2 \sin (\pi k \nu)} \int_{\theta}^{\theta+2 \pi} H_{1 k} e^{i k\left[\phi+\nu\left(\theta^{\prime}-\theta-\pi\right)\right]} d \theta^{\prime}
$$

\square For the sextupole, and letting $\psi(s)=\int_{0}^{s} \frac{d s^{\prime}}{\beta\left(s^{\prime}\right)}$ we have
$S_{1}=-\frac{\bar{J}^{3 / 2}}{2 \sqrt{2}} \int_{s}^{s+C} K_{s}\left(s^{\prime}\right) \beta\left(s^{\prime}\right)^{3 / 2}\left[\frac{\sin \left(\phi+\psi\left(s^{\prime}\right)-\psi(s)-\pi \nu\right)}{\sin (\pi \nu)}+\frac{\sin 3\left(\phi+\psi\left(s^{\prime}\right)-\psi(s)-\pi \nu\right)}{3 \sin (3 \pi \nu)}\right] d s_{85}^{\prime}$

■ The single resonance accelerator Hamiltonian (Hagedorn (1957), Schoch (1957), Guignard (1976, 1978))
$H\left(J_{x}, J_{y}, \phi_{x}, \phi_{y}, s\right)=\frac{1}{R}\left(\nu_{x} J_{x}+\nu_{y} J_{y}\right)+g_{n_{x}, n_{y}} \frac{2}{R} J_{x}^{\frac{k_{x}}{2}} J_{y}^{\frac{k_{y}}{2}} \cos \left(n_{x} \phi_{x}+n_{y} \phi_{y}+\phi_{0}-p \theta\right)$
with $\quad g_{n_{x}, n_{y}} e^{i \phi_{0}}=g_{j, k, l, m ; p}$
\square From the generating function
$F_{r}\left(\phi_{x}, \phi_{y}, \hat{J}_{x}, \hat{J}_{y}, s\right)=\left(n_{x} \phi_{x}+n_{y} \phi_{y}-p \theta\right) \hat{J}_{x}+\phi_{y} \hat{J}_{y}$ the relationships between old and new variables are

$$
\begin{array}{ll}
\hat{\phi}_{x}=\left(n_{x} \phi_{x}+n_{y} \phi_{y}-p \theta\right), & J_{x}=n_{x} \hat{J}_{x} \\
\hat{\phi}_{y}=\phi_{y}, & J_{y}=n_{y} \hat{J}_{x}+\hat{J}_{y}
\end{array}
$$

- The following Hamiltonian is obtained $\hat{H}\left(\hat{J}_{x}, \hat{J}_{y}, \hat{\phi}_{x}\right)=\frac{\left(n_{x} \nu_{x}+n_{y} \nu_{y}-p\right) \hat{J}_{x}+\hat{J}_{y}}{R}+g_{n_{x}, n_{y}} \frac{2}{R}\left(n_{x} \hat{J}_{x}\right)^{\frac{k_{x}}{2}}\left(n_{y} \hat{J}_{x}+\hat{J}_{y}\right)^{\frac{k_{y}}{2}} \cos \left(\hat{\phi}_{x}+\phi_{0}\right)_{86}$
- There are two integrals of motion
\square The Hamiltonian, as it is independent on "time"
\square The new action \hat{J}_{y} as the Hamiltonian is independent on $\hat{\phi}_{y}$
- The two invariants in the old variables are written as:
$c_{1}=\frac{J_{x}}{n_{x}}-\frac{J_{y}}{n_{y}}$
$c_{2}=\left(\nu_{x}-\frac{p}{n_{x}+n_{y}}\right) J_{x}+\left(\nu_{y}-\frac{p}{n_{x}+n_{y}}\right) J_{y}+2 g_{n_{x}, n_{y}} J_{x}^{\frac{k_{x}}{2}} J_{y}^{\frac{k_{y}}{2}} \cos \left(n_{x} \phi_{x}+n_{y} \phi_{y}+\phi_{0}-p \theta\right)$
- Two cases can be distinguished
- $\quad n_{x}, n_{y}$ have opposite sign, i.e. difference resonance, the motion is the one of an ellipse, so bounded
$\square \quad n_{x}, n_{y}$ have the same sign, i.e. sum resonance, the motion is the one of an hyperbola, so not bounded
- These are first order perturbation theory considerations
- The distance from the resonance is obtained as

$$
\Delta=\frac{g_{n_{x}, n_{y}}}{R} J_{x}^{\frac{k_{x}-2}{2}} J_{y}^{\frac{k_{y}-2}{2}}\left(k_{x} n_{x} J_{x}+k_{y} n_{y} J_{y}\right)
$$

