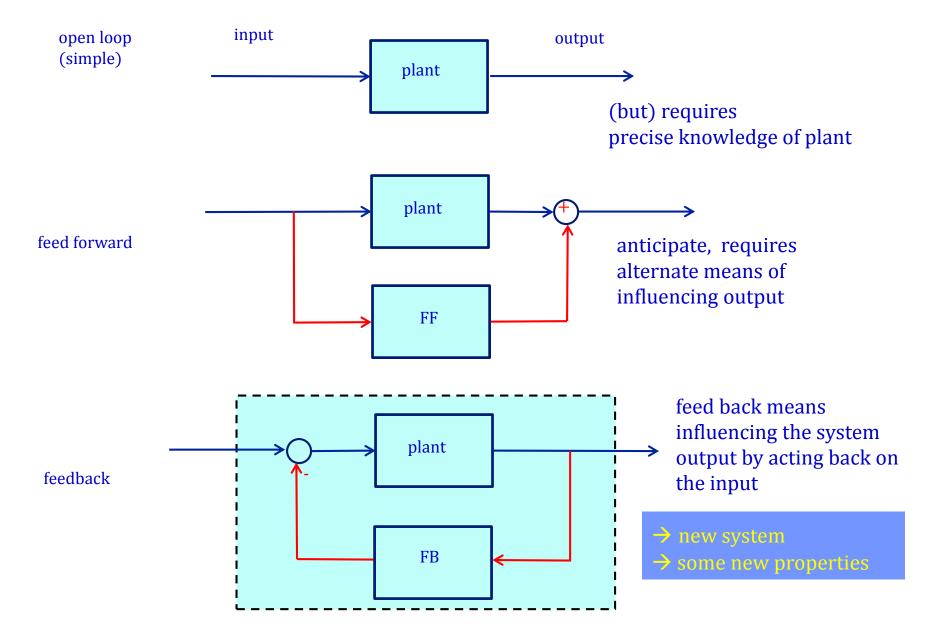
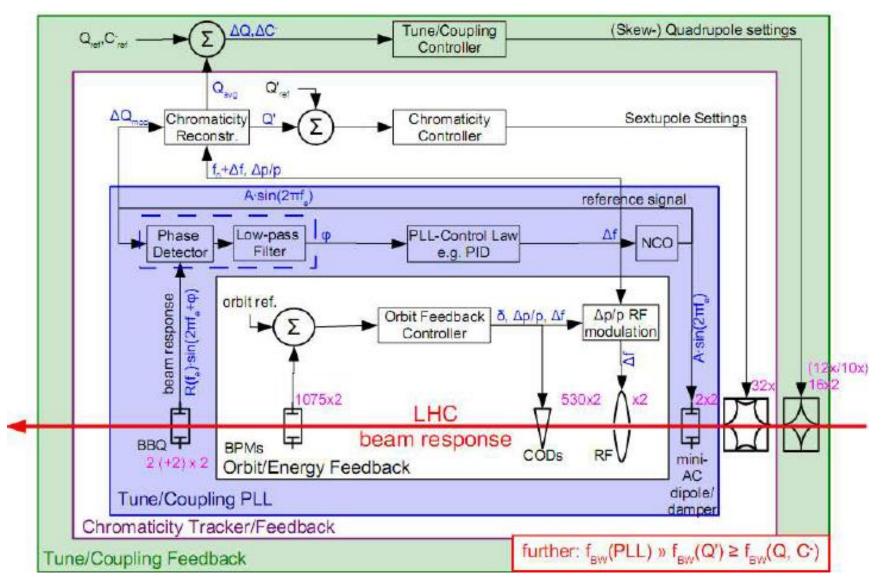


- **w** What is feedback?
- **What are the applications in accelerators?**
- Coupled-bunch instabilities
- **u** Basics of feedback systems
- **Solution** Feedback system components
- Digital signal processing
- Using feedbacks for beam diagnostics

What means feedback?



- An accelerator, which relies on active beam feedback to get basic performance, is a based on a questionable concept.
 Feedbacks should not be used to fix equipment, that can be fixed or redesigned.
- Typically feedbacks are employed to achieve ultimate performance and long term stability.
- Feedbacks are used in the transverse and longitudinal plane.
- We concentrate on feedback systems based on beam signals (almost every technical equipment has internal feedback controllerspower converters, RF systems, instrumentation...)
- Beam feedbacks:
 - 1) Transverse and/or longitudinal damping against beam instabilities
 - 2) Injection damping
 - 3) Slow control of machine parameters (orbit, tune, chromaticity)
 - 1+2 have hard real time constraints (turn by turn), 3 has lower bandwidth
- Apart from showing one example, we focus on feedback types 1 and 2



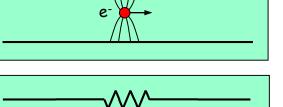
- **u**Transverse (betatron) and longitudinal (synchrotron) oscillations
 - strongly damped by radiation damping in lepton accelerators (lightsources)
 - undamped in proton accelerators (disregarding 100 TeV designs)
- **u** Interaction of the electromagnetic field with metallic surroundings ("wake fileds")
- **w** Wake fields act back on the beam and produces growth of oscillations
- **u** If the growth rate is stronger than the natural damping the oscillation gets unstable
- Su Consequences are emittance increase or particle loss.
- Since wake fields are proportional to the bunch charge, the onset of instabilities and their amplitude are normally current dependent
- Solution Another "instability", i.e. large beam oscillation is due to errors at the moment of injection: rather uncritical for lepton machines (radiation damping) vital for hadron machines (filamentation and emittance increase → loss in luminosity)
- **2** People always aim at higher brightness beams or higher luminosity collisions, which means
 - maximum beam/bunch intensity
 - minimum beam emittance
- **Sooner** or later feedbacks are employed to gain the last factors of performance.

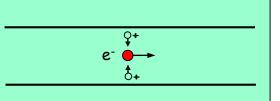
Cavity High Order Modes (HOM) High Q spurious resonances of the accelerating cavity excited by the bunched beam act back on the beam itself Each bunch affects the following bunches through the wake fields excited in the cavity The cavity HOM can couple with a beam oscillation mode having the same frequency and give rise to instability Electron Bunch

Resistive wall impedance Interaction of the beam with the vacuum chamber. Particularly strong in low-gap chambers and in-vacuum insertion devices (undulators and wigglers)

Interaction of the beam with other objects Discontinuities in the vacuum chamber, small cavity-like structures, ... Ex. BPMs, vacuum pumps, bellows, ...

Ion instabilities Gas molecules ionized by collision with the electron beam Positive ions remains trapped in the negative electric potential Produce electron-ion coherent oscillations



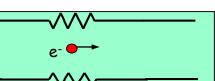


Thorough design of the RF cavity Mode dampers with antennas and resistive loads Tuning of HOMs frequencies through plungers or changing the cavity	temperature
Resistive wall impedance Usage of low resistivity materials for the vacuum pipe Optimization of vacuum chamber geometry	e-
Interaction of the beam with other objects Proper design of the vacuum chamber and of the various installed objects	e-●→
Ion instabilities Ion cleaning with a gap in the bunch train	e- ∲+ ♦+

Landau damping by increasing the tune spread Higher harmonic RF cavity (bunch lengthening) Modulation of the RF Octupole magnets (transverse)

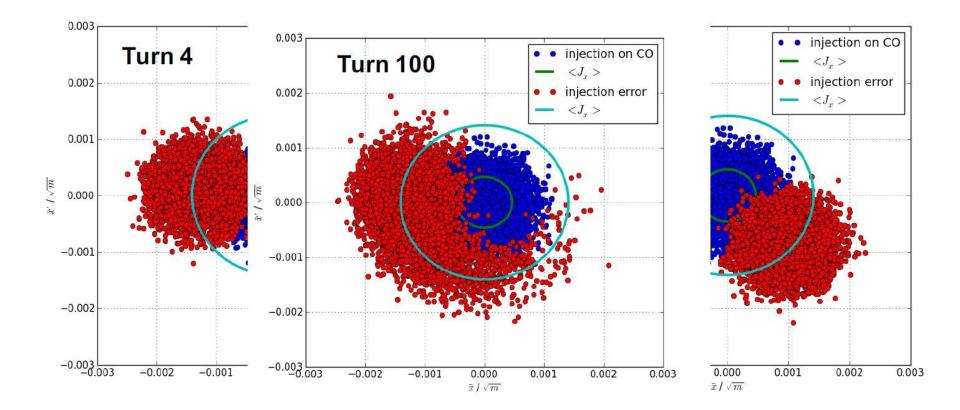
Active Feedbacks

Cavity High Order Modes (HOM)



Steering error – non-linear machine

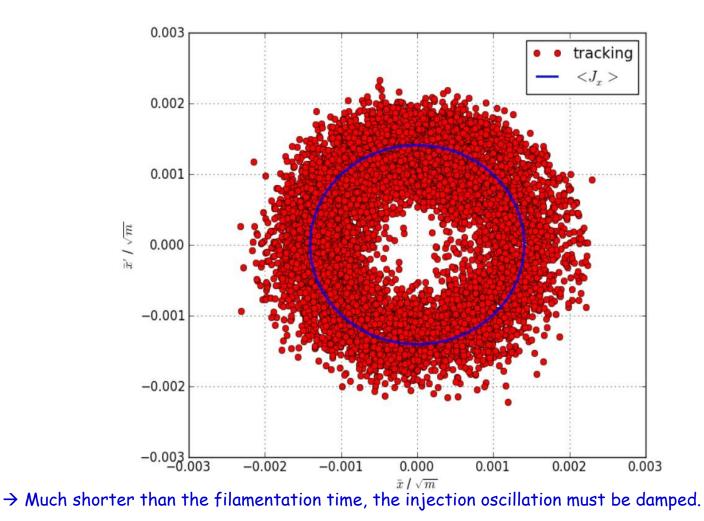
• What will happen to particle distribution and hence emittance?



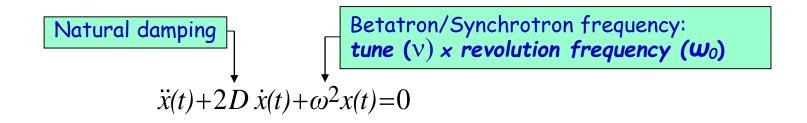
• The beam is filamenting....

Steering error – non-linear machine

• Phase-space after an even longer time



"x" is the oscillation coordinate (transverse or longitudinal displacement)



If $\omega \gg D$, an approximated solution of the differential equation is a damped sinusoidal oscillation:

where $\tau_D = 1/D$ is the "damping time constant" (D is called "damping rate")

Excited oscillations (ex. by quantum excitation) are damped by natural damping (ex. due to synchrotron radiation damping). The oscillation of individual particles is uncorrelated and shows up as an emittance growth

Coupling with other bunches through the interaction with surrounding metallic structures addd a "driving force" term F(t) to the equation of motion:

$$\ddot{x}(t) + 2D \,\dot{x}(t) + \omega^2 x(t) = F(t)$$

Under given conditions the oscillation of individual particles becomes correlated and the centroid of the bunch oscillates giving rise to coherent bunch (coupled bunch) oscillations

Each bunch oscillates according to the equation of motion:

 $\ddot{x}(t) + 2(D G)\dot{x}(t) + \omega^2 x(t) = 0$

where $\tau_G = 1/G$ is the "growth time constant" (G is called "growth rate")

If D > G the oscillation amplitude decays exponentially

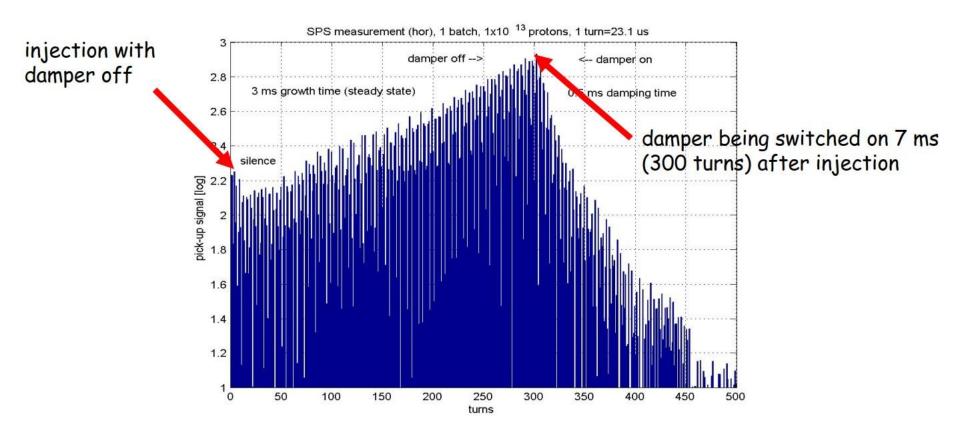
If D < G the oscillation amplitude grows exponentially

as: $x(t) = e^{-\frac{t}{\tau}} \sin(\omega t + \varphi)$ where $\frac{1}{\tau} = \frac{1}{\tau_D} - \frac{1}{\tau_G}$

Since G is proportional to the beam current, if the latter is lower than a given current threshold the beam remains stable, if higher a coupled bunch instability is excited

High intensity proton beam injected into the SPS:

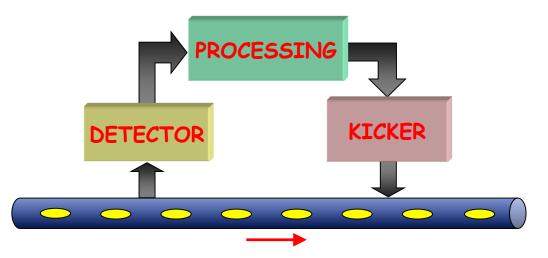
3 ms growth rate 0.5 ms damping time



The feedback action adds a damping term D_{fb} to the equation of motion

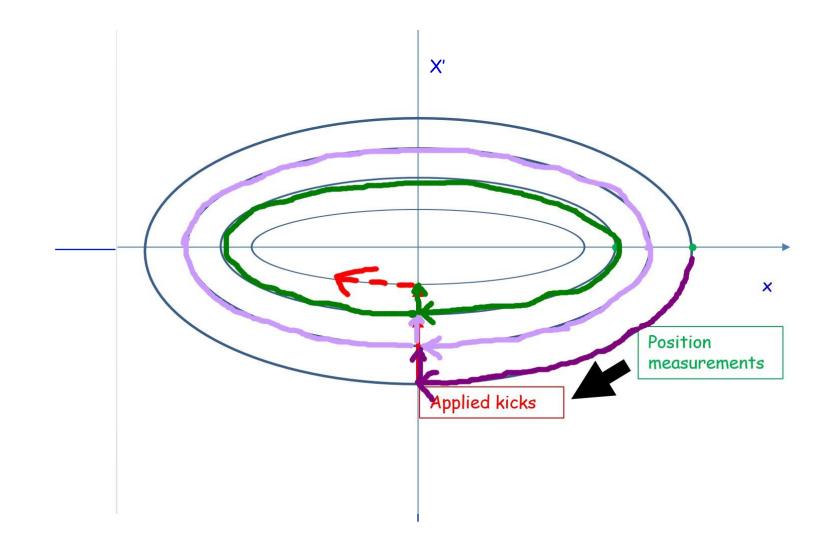
 $\ddot{x}(t) + 2(D - G + D_{fb}) \dot{x}(t) + \omega^2 x(t) = 0$ Such that $D - G + D_{fb} > 0$

A multi-bunch feedback detects an instability by means of one or more Beam Position Monitors (BPM) and acts back on the beam by applying electromagnetic 'kicks' to the bunches

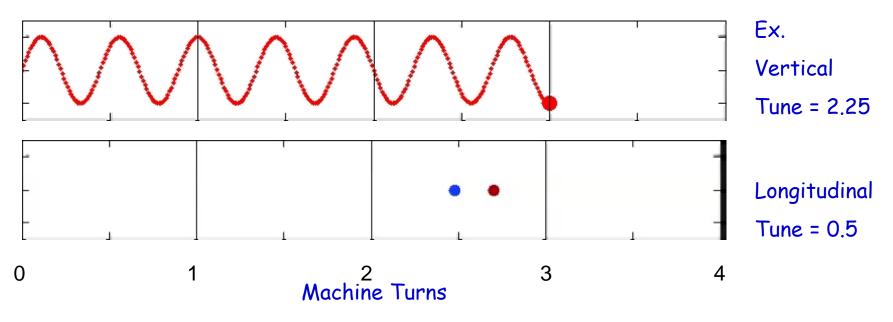


In order to introduce damping, the feedback must provide a kick proportional to the derivative of the bunch oscillation

Since the oscillation is sinusoidal, the kick signal for each bunch can be generated by shifting by $\pi/2$ the oscillation signal of the same bunch when it passes through the kicker



Typically, betatron tune frequencies (horizontal and vertical) are higher than the revolution frequency, while the synchrotron tune frequency (longitudinal) is lower than the revolution frequency



Although each bunch oscillates at the tune frequency, there can be different modes of oscillation, called multi-bunch modes depending on how each bunch oscillates with respect to the other bunches

Let us consider M bunches equally spaced around the ring

Each multi-bunch mode is characterized by a bunch-to-bunch phase difference of:

$$\Delta \Phi = m \frac{2\pi}{M} \qquad m = \text{multi-bunch mode number (0, 1, ..., M-1)}$$

Each multi-bunch mode is associated to a characteristic set of frequencies:

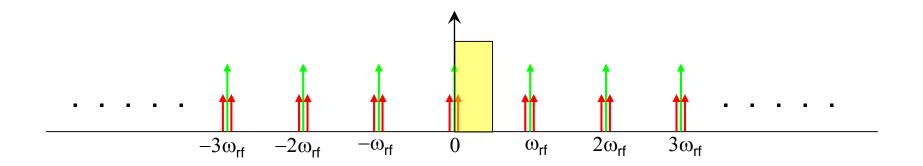
$$\omega = p M \omega_0 \pm (m + \nu) \omega_0$$

Where:

```
p is and integer number -\infty 
<math>\omega_0 is the revolution frequency
M\omega_0 = \omega_{rf} is the RF frequency (bunch repetition frequency)
v is the tune
```

Two sidebands at $\pm (m+\nu)\omega_0$ for each multiple of the RF frequency

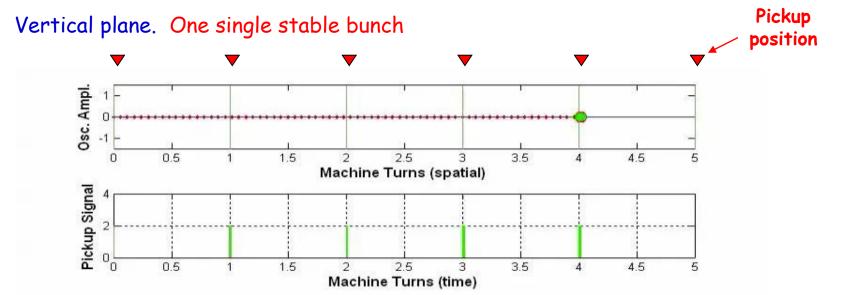
The spectrum is a repetition of frequency lines at multiples of the bunch repetition frequency with sidebands at $\pm v\omega_0$: $\omega = p\omega_{rf} \pm v\omega_0$ $-\infty (v = 0.25)$



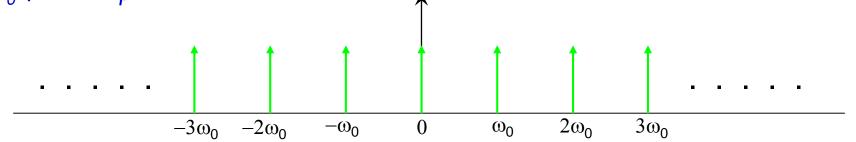
Since the spectrum is periodic and each mode appears twice (upper and lower side band) in a ω_{rf} frequency span, we can limit the spectrum analysis to a 0- ω_{rf} /2 frequency range

- The inverse statement is also true:
- Since we 'sample' the continuous motion of the beam with only one pickup, any other frequency component above half the 'sampling frequency' (i.e the bunch frequency ω_{rf}) is not accessible (Nyquist or Shannon Theorem)

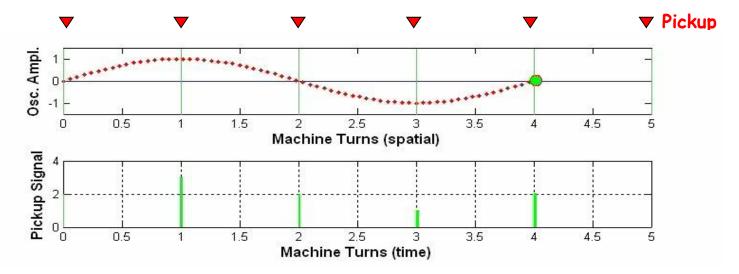
Multi-bunch modes: example1



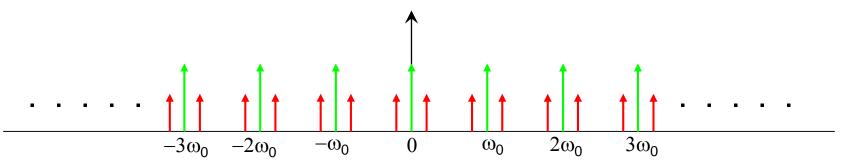
Every time the bunch passes through the pickup (\bigtriangledown) placed at coordinate 0, a pulse with constant amplitude is generated. If we think it as a Dirac impulse, the spectrum of the pickup signal is a repetition of frequency lines at multiple of the revolution frequency: $p\omega_0$ for $-\infty$



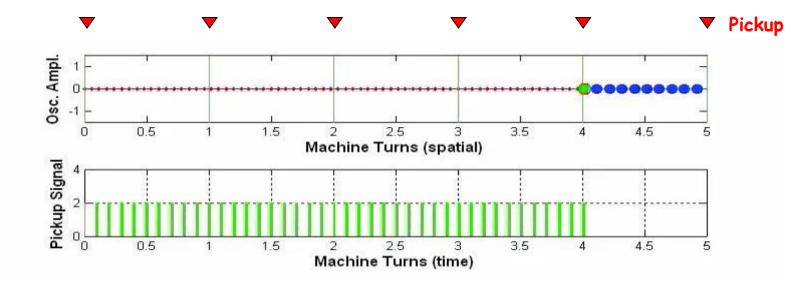
One single unstable bunch oscillating at the tune frequency $v\omega_0$: for simplicity we consider a vertical tune v < 1, ex. v = 0.25. $M = 1 \rightarrow$ only mode #0 exists



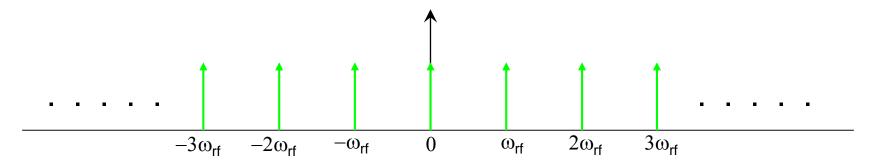
The pickup signal is a sequence of pulses modulated in amplitude with frequency $v\omega_0$ Two sidebands at $\pm v\omega_0$ appear at each of the revolution harmonics

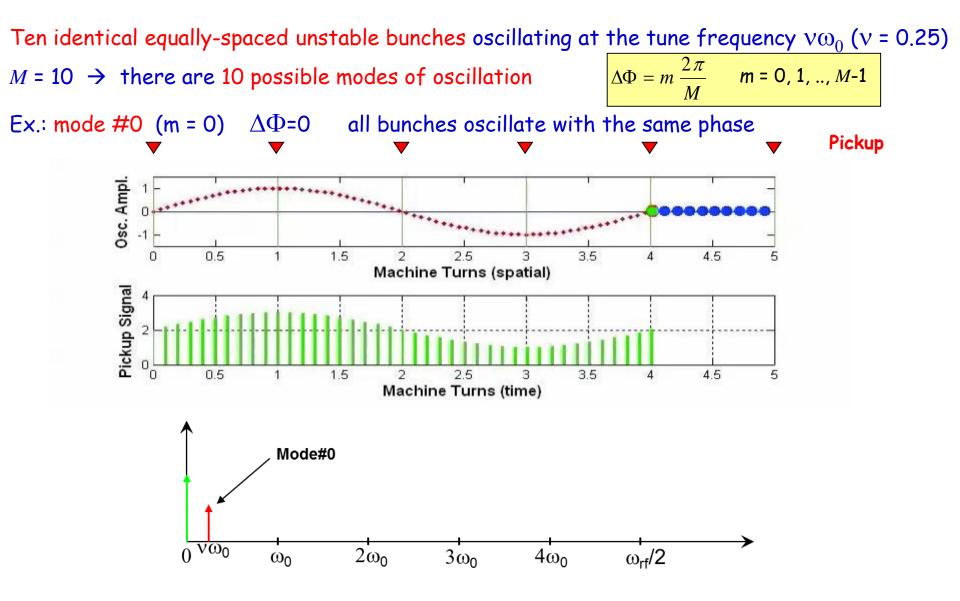


Ten identical equally-spaced stable bunches filling all the ring buckets (M = 10)

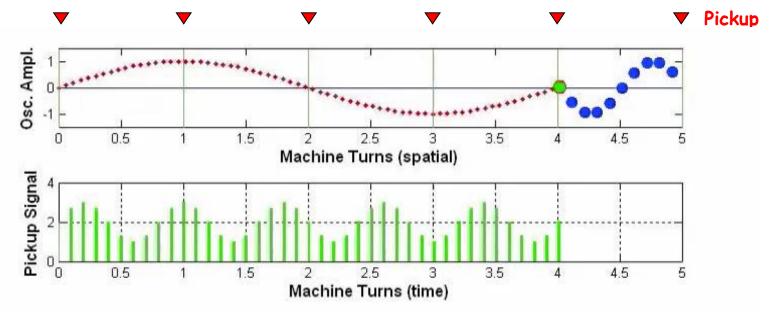


The spectrum is a repetition of frequency lines at multiples of the bunch repetition frequency: $\omega_{rf} = 10 \omega_0$ (RF frequency)

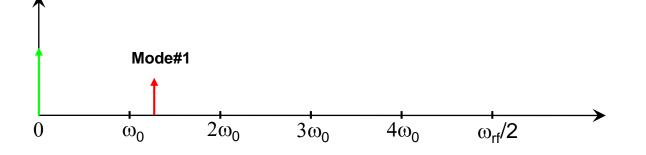




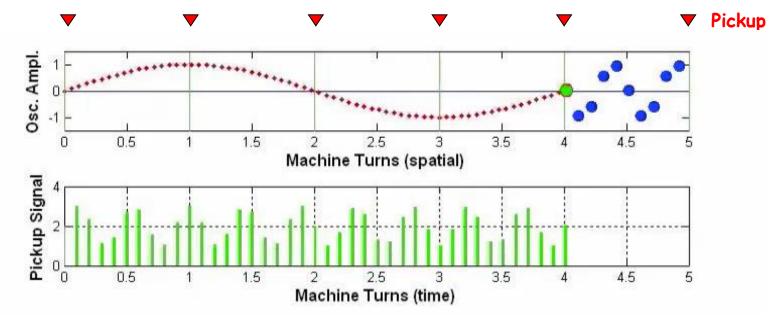
Ex.: mode #1 (m = 1) $\Delta \Phi = 2\pi/10$ (v = 0.25)



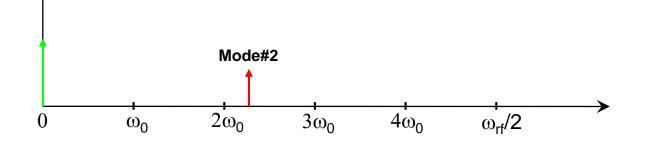
 $ω = pω_{rf} \pm (ν+1)ω_0$ -∞ < p < ∞



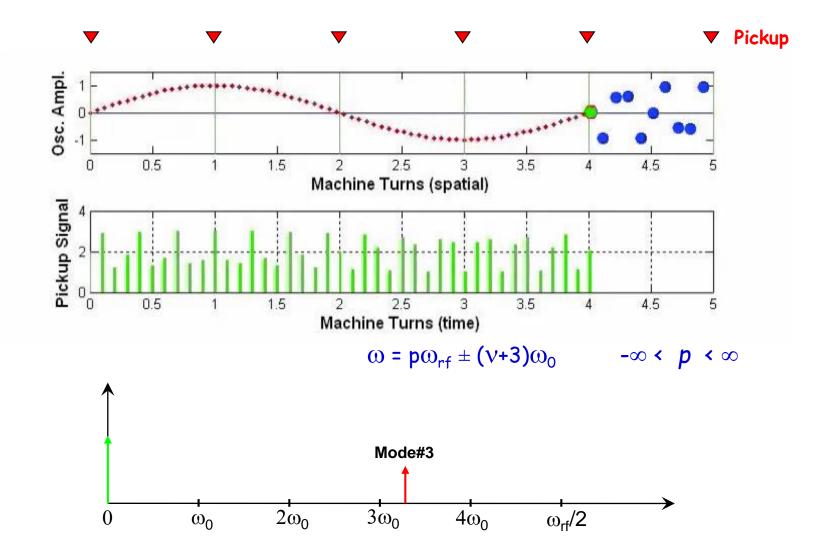
Ex.: mode #2 (m = 2) $\Delta \Phi = 4\pi/10$ (v = 0.25)



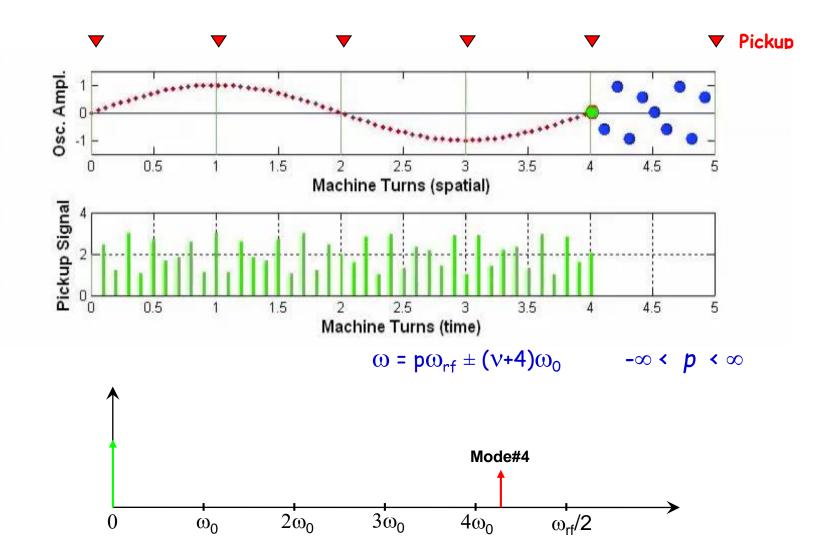
 $ω = pω_{rf} \pm (v+2)ω_0$ $-\infty$

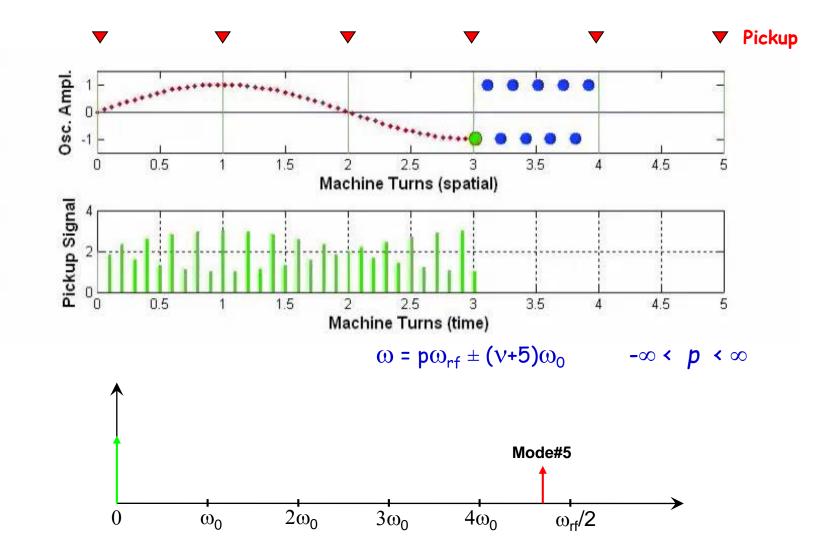


Ex.: mode #3 (m = 3) $\Delta \Phi = 6\pi/10$ (v = 0.25)

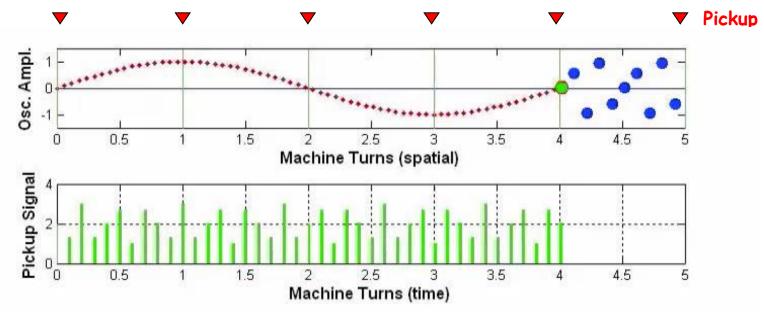


Ex.: mode #4 (m = 4) $\Delta \Phi = 8\pi/10$ (v = 0.25)

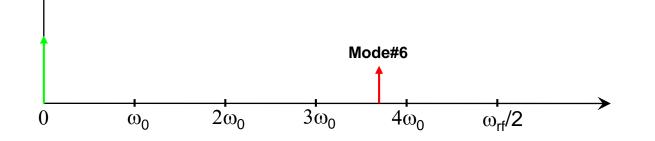




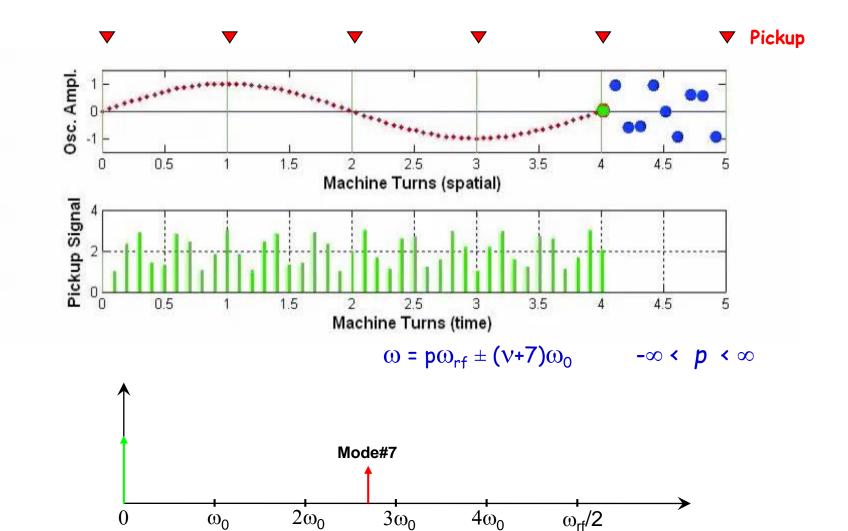
Ex.: mode #6 (m = 6) $\Delta \Phi = 12\pi/10$ (v = 0.25)



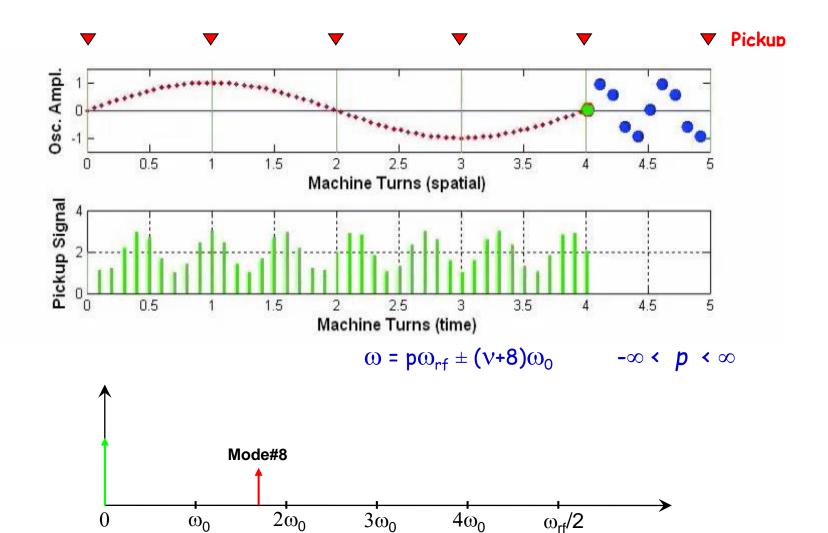
 $ω = pω_{rf} \pm (ν+6)ω_0$ -∞ < p < ∞



Ex.: mode #7 (m = 7) $\Delta \Phi = 14\pi/10$ (v = 0.25)

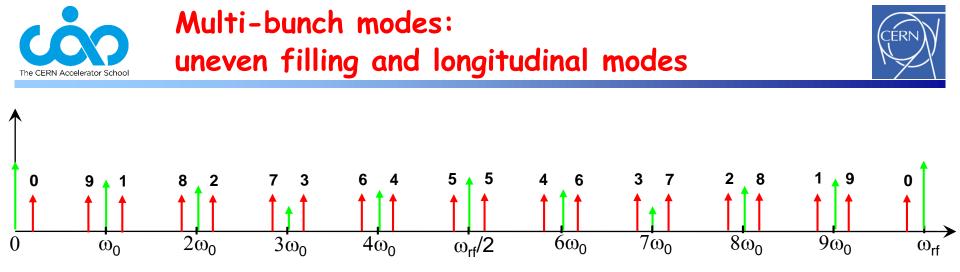


Ex.: mode #8 (m = 8) $\Delta \Phi = 16\pi/10$ (v = 0.25)



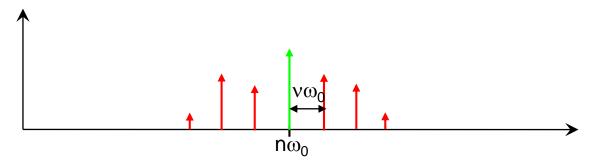
Ex.: mode #9 (m = 9) $\Delta \Phi = 18\pi/10$ (v = 0.25)





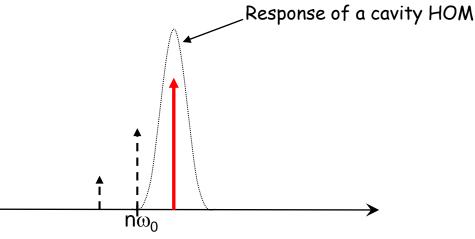
If the bunches have not the same charge, i.e. the buckets are not equally filled (uneven filling), the spectrum has frequency components also at the revolution harmonics (multiples of ω_0). The amplitude of each revolution harmonic depends on the filling pattern of one machine turn

In case of longitudinal modes, we have a phase modulation of the stable beam signal. Components at $\pm v\omega_0$, $\pm 2v\omega_0$, $\pm 3v\omega_0$, ... can appear aside the revolution harmonics. Their amplitude depends on the depth of the phase modulation (Bessel series expansion)



One multi-bunch mode can become unstable if one of its sidebands overlaps, for example, with the frequency response of a cavity high order mode (HOM). The HOM couples with the sideband giving rise to a coupled-bunch instability, with consequent increase of the sideband amplitude

Synchrotron Radiation Monitor showing the transverse beam shape

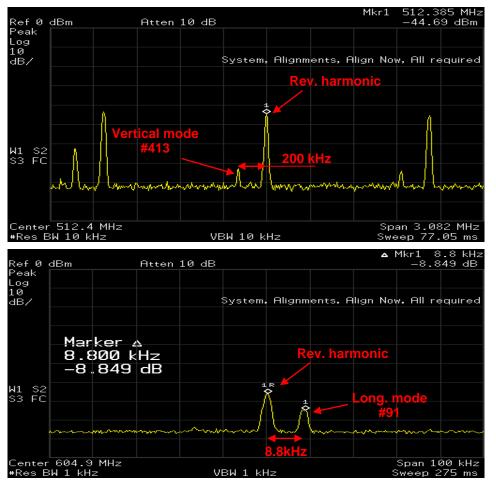


Effects of coupled-bunch instabilities:
increase of the transverse beam dimensions
increase of the effective emittance
beam loss and max current limitation
increase of lifetime due to decreased Touschek scattering (dilution of particles)

Real example of multi-bunch modes

ELETTRA Synchrotron: f_{rf}=499.654 Mhz, bunch spacing≈2ns, 432 bunches, f₀ = 1.15 MHz

 v_{hor} = 12.30(fractional tune frequency=345kHz), v_{vert} =8.17(fractional tune frequency=200kHz) v_{long} = 0.0076 (8.8 kHz)



 $\omega = p M \omega_0 \pm (m + \nu) \omega_0$

Spectral line at 512.185 MHz

Lower sideband of $2f_{rf}$, 200 kHz apart from the 443^{rd} revolution harmonic

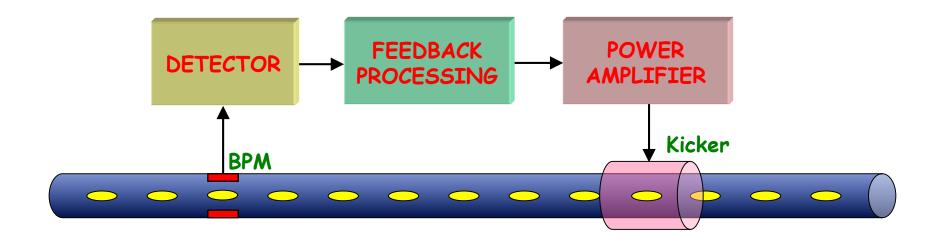
 \rightarrow vertical mode #413

Spectral line at 604.914 MHz

Upper sideband of $f_{\rm rf},\,8.8 kHz$ apart from the $523^{\rm rd}$ revolution harmonic

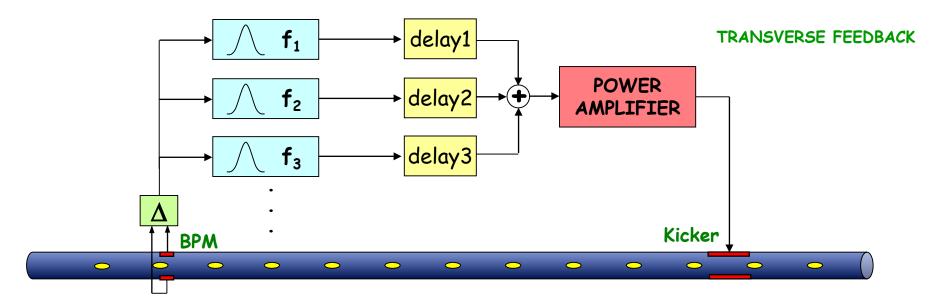
 \rightarrow longitudinal mode #91

A multi-bunch feedback system detects the instability using one or more Beam Position Monitors (BPM) and acts back on the beam to damp the oscillation through an electromagnetic actuator called kicker



BPM and detector measure the beam oscillations The feedback processing unit generates the correction signal The RF power amplifier amplifies the signal The kicker generates the electromagnetic field

A mode-by-mode (frequency domain) feedback acts separately on each unstable mode

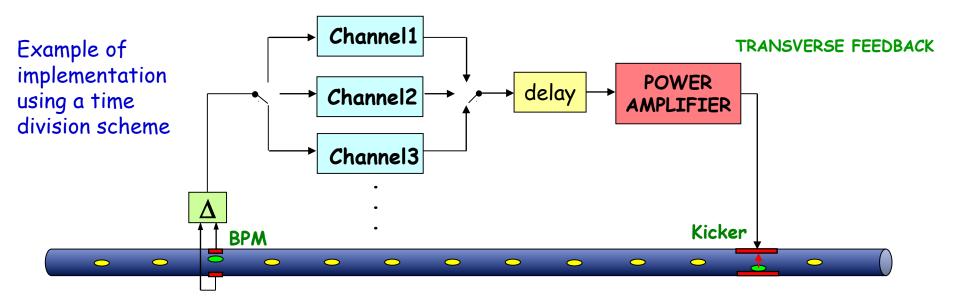


An analog electronics generates the position error signal from the BPM buttons

- A number of processing channels working in parallel each dedicated to one of the controlled modes
- The signals are band-pass filtered, phase shifted by an adjustable delay line to produce a negative feedback and recombined

A bunch-by-bunch (time domain) feedback individually steers each bunch by applying small electromagnetic kicks every time the bunch passes through the kicker: the result is a damped oscillation lasting several turns

The correction signal for a given bunch is generated based on the motion of the same bunch



Every bunch is measured and corrected at every machine turn but, due to the delay of the feedback chain, the correction kick corresponding to a given measurement is applied to the bunch one or more turns later

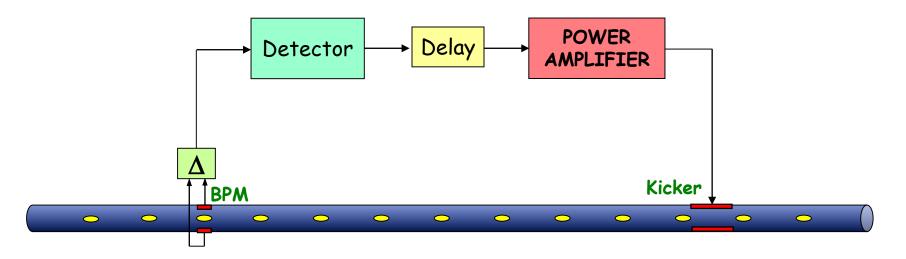
Damping the oscillation of each bunch is equivalent to damping all multi-bunch modes

CERN

Transverse feedback

The correction signal applied to a given bunch must be proportional to the derivative of the bunch oscillation at the kicker, thus it must be a sampled sinusoid shifted $\pi/2$ with respect to the oscillation of the bunch when it passes through the kicker

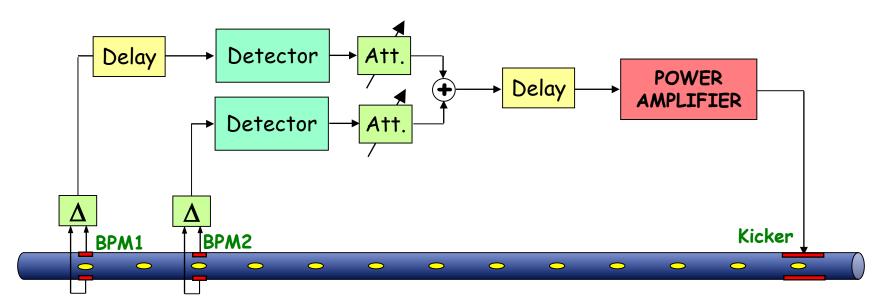
The signal from a BPM with the appropriate betatron phase advance with respect to the kicker can be used to generate the correction signal



The detector down converts the high frequency (typically a multiple of the bunch frequency f_{rf}) BPM signal into base-band (range 0 - $f_{rf}/2$)

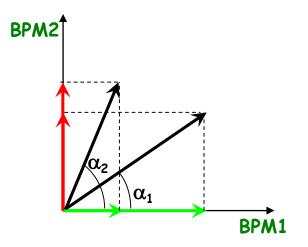
The delay line assures that the signal of a given bunch passing through the feedback chain arrives at the kicker when, after one machine turn, the same bunch passes through it

Transverse feedback case



The two BPMs can be placed in any ring position with respect to the kicker providing that they are separated by $\pi/2$ in betatron phase

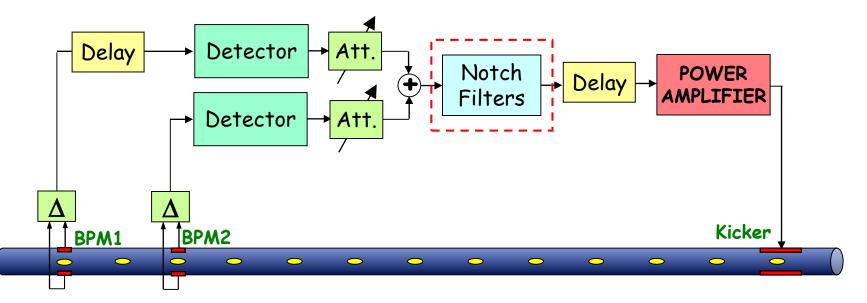
Their signals are combined with variable attenuators in order to provide the required phase of the resulting signal



Transverse feedback case

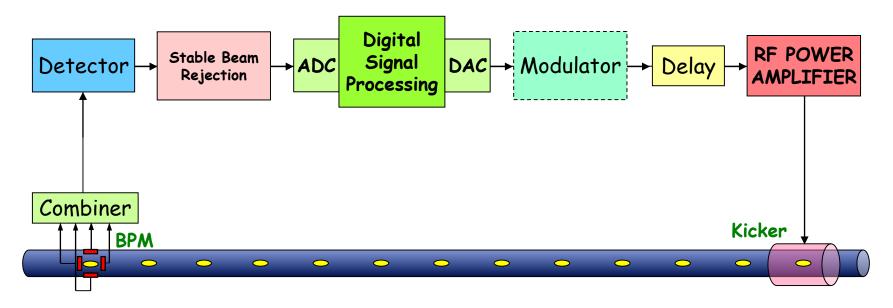
The revolution harmonics (frequency components at multiples of ω_0) are useless components that have to be eliminated in order not to saturate the RF amplifier

This operation is also called "stable beam rejection"

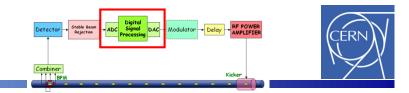


Similar feedback architectures have been used to built the transverse multi-bunch feedback system of a number of light sources: ex. ALS, BessyII, PLS, ANKA, ...

Transverse and longitudinal case



The combiner generates the X, Y or Σ signal from the BPM button signals The detector (RF front-end) demodulates the position signal to base-band "Stable beam components" are suppressed by the stable beam rejection module The resulting signal is digitized, processed and re-converted to analog by the digital processor The modulator translates the correction signal to the kicker working frequency (long. only) The delay line adjusts the timing of the signal to match the bunch arrival time The RF power amplifier supplies the power to the kicker



ADVANTAGES OF DIGITAL FEEDBACKS

reproducibility: all parameters (gains, delays, filter coefficients) are NOT subject to temperature/environment changes or aging

programmability: the implementation of processing functionalities is usually made using DSPs or FPGAs, which are programmable via software/firmware
 performance: digital controllers feature superior processing capabilities with the

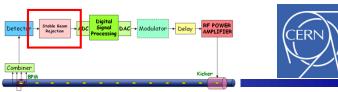
possibility to implement sophisticated control algorithms not feasible in analog
 additional features: possibility to combine basic control algorithms and additional useful features like signal conditioning, saturation control, down sampling, etc.

u implementation of diagnostic tools, used for both feedback commissioning and machine physics studies

u easier and more efficient integration of the feedback in the accelerator control system for data acquisition, feedback setup and tuning, automated operations, etc.

DISADVANTAGE OF DIGITAL FEEDBACKS

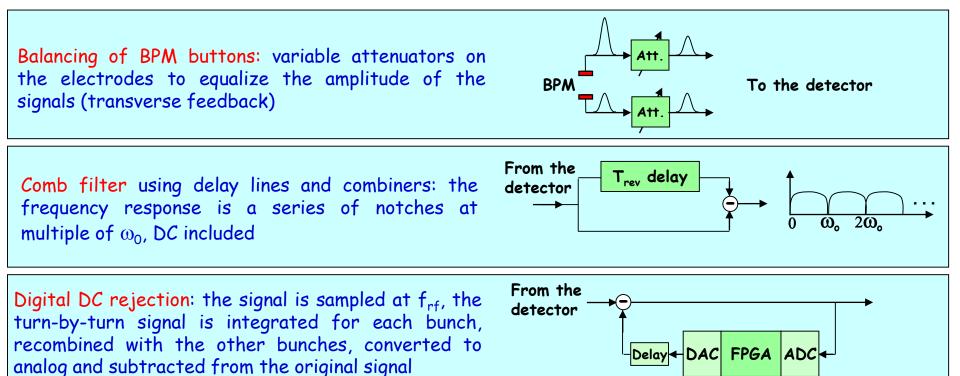
u High delay due to ADC, digital processing and DAC



The turn-by-turn pulses of each bunch can have a constant offset (stable beam signal) due to:

- **u** transverse case: off-centre beam or unbalanced BPM electrodes or cables
- » longitudinal case: beam loading, i.e. different synchronous phase for each bunch
- In the frequency domain, the stable beam signal carries non-zero revolution harmonics
- These components have to be suppressed because don't contain information about multi-bunch modes and can saturate ADC, DAC and amplifier

Examples of used techniques:

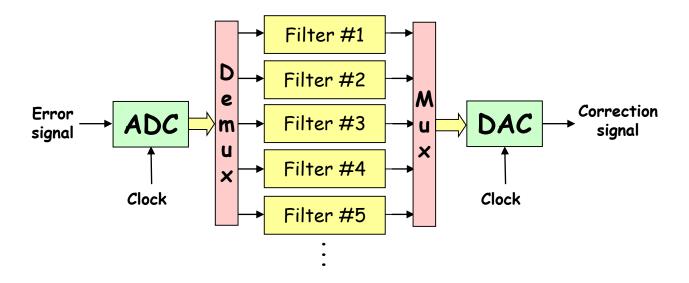


The A/D converter samples and digitizes the signal at the bunch repetition frequency: each sample corresponds to the position (X, Y or Φ) of a given bunch. Precise synchronization of the sampling clock with the bunch signal must be provided

The digital samples are then de-multiplexed into M channels (M is the number of bunches): in each channel the turn-by-turn samples of a given bunch are processed by a dedicated digital filter to calculate the correction samples

The basic processing consists in DC component suppression (if not completely done by the external stable beam rejection) and phase shift at the betatron/synchrotron frequency

After processing, the correction sample streams are recombined and eventually converted to analog by the D/A converter



Examples of digital processors

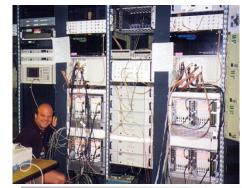
» PETRA transverse and longitudinal feedbacks: one ADC, a digital processing electronics made of discrete components (adders, multipliers, shift registers, ...) implementing a FIR filter, and a DAC

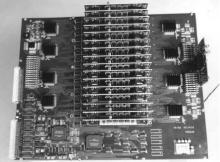
■ ALS/PEP-II/DAΦNE longitudinal feedback (also adopted at SPEAR, Bessy II and PLS): A/D and D/A conversions performed by VXI boards, feedback processing made by DSP boards hosted in a number of VME crates

» PEP-II transverse feedback: the digital part, made of two ADCs, a FPGA and a DAC, features a digital delay and integrated diagnostics tools, while the rest of the signal processing is made analogically

▶ KEKB transverse and longitudinal feedbacks: the digital ∜ processing unit, made of discrete digital electronics and banks of memories, performs a two tap FIR filter featuring stable beam rejection, phase shift and delay

Solution Electra/SLS transverse and longitudinal feedbacks: the digital processing unit is made of a VME crate equipped with one ADC, one DAC and six commercial DSP boards (Electra only) with four microprocessors each





Solution CESR transverse and longitudinal feedbacks: they employ VME digital processing boards equipped with ADC, DAC, FIFOs and PLDs

▶ HERA-p longitudinal feedback: it is made of a processing chain with two ADCs (for I and Q components), a FPGA and two DACs

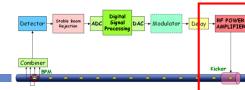
SPring-8 transverse feedback (also adopted at TLS, KEK Photon Factory and Soleil): fast analog de-multiplexer that distributes analog samples to a number of slower ADC FPGA channels. The correction samples are converted to analog by one DAC

SERF transverse/longitudinal and Diamond transverse feedbacks: commercial product 'Libera Bunch by Bunch' (by Instrumentation Technologies), which features four ADCs sampling the same analog signal opportunely delayed, one FPGA and one DAC

u HLS tranverse feedback: the digital processor consists of two ADCs, one FPGA and two DACs

DADNE transverse and **KEK-Photon-Factory** longitudinal feedbacks: commercial product called 'iGp' (by Dimtel), featuring an ADC-FPGA-DAC chain

Amplifier and kicker



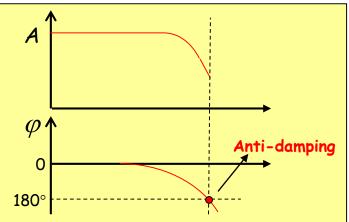
The kicker is the feedback actuator. It generates a transverse/longitudinal electromagnetic field that steers the bunches with small kicks as they pass through the kicker. The overall effect is damping of the betatron/synchrotron oscillations

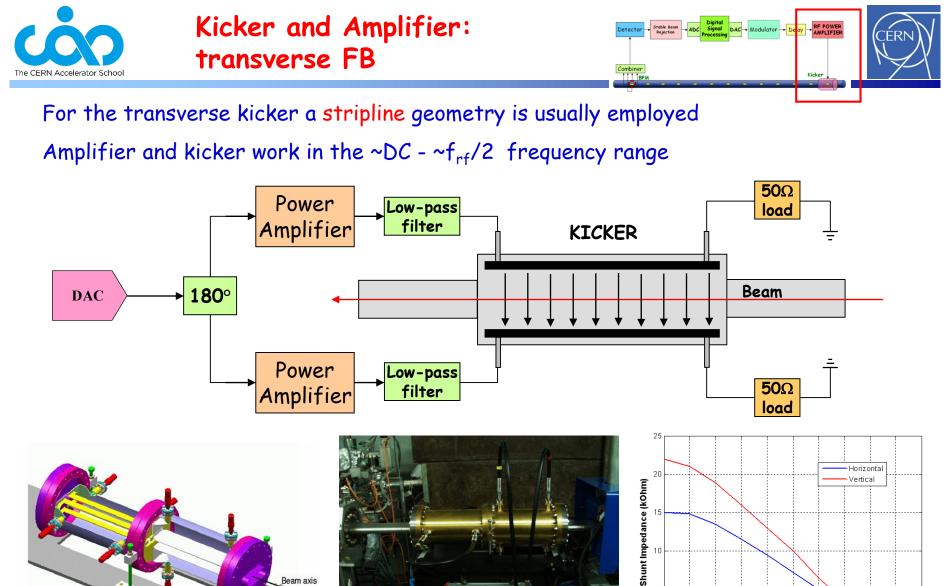
The amplifier must provide the necessary RF power to the kicker by amplifying the signal from the DAC (or from the modulator in the case of longitudinal feedbacks)

A bandwidth of at least $f_{rf}/2$ is necessary: from ~DC (all kicks of the same sign) to ~ $f_{rf}/2$ (kicks of alternating signs)

The bandwidth of amplifier-kicker must be sufficient to correct each bunch with the appropriate kick without affecting the neighbour bunches. The amplifier-kicker design has to maximize the kick strength while minimizing the cross-talk between corrections given to adjacent bunches

Important issue: the group delay of the amplifier must be as constant as possible, i.e. the phase response must be linear, otherwise the feedback efficiency is reduced for some modes and the feedback can even become positive Shunt impedance, ratio between the squared voltage seen by the bunch and twice the power at the kicker input:



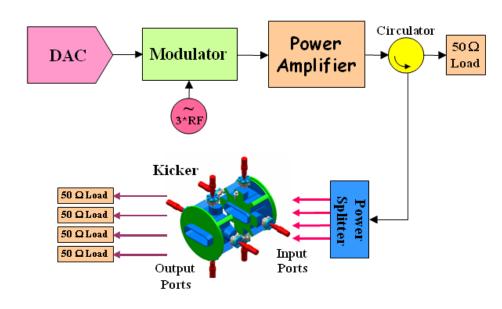


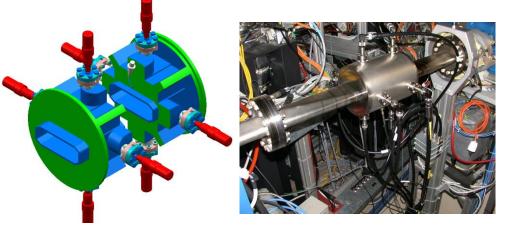
Beam axis

ELETTRA/SLS transverse kickers

Frequency (MHz) Shunt impedance of the The ELETTRA/SLS transverse kicker (by Micha Dehler-PSI)

Kicker and Amplifier: longitudinal FB





The ELETTRA/SLS longitudinal kicker (by Micha Dehler-PSI)

Detector + Stelle Rean + ADC Signal DA + Modulator + bely + RF POWER Repetion + ADC Processing DA + Modulator + bely + RAPLIFIER Kicker

A "cavity like" kicker is usually preferred Higher shunt impedance and smaller size

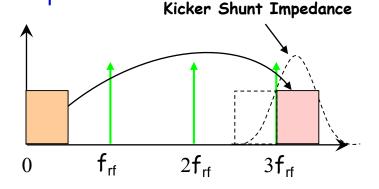
The operating frequency range is typically $f_{rf}/2$ wide and placed on one side of a multiple of f_{rf} :

ex. from
$$3f_{rf}$$
 to $3f_{rf}+f_{rf}/2$

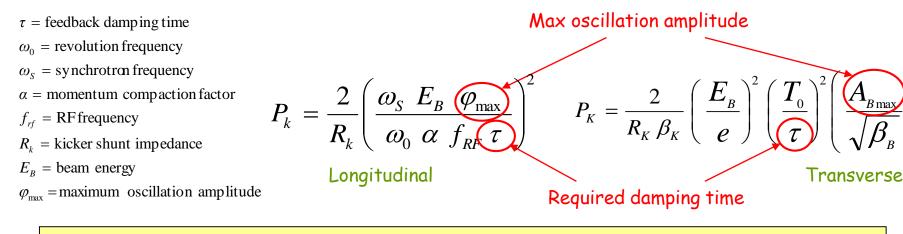
A "pass-band" instead of "base-band" device

The base-band signal from the DAC must be modulated, i.e. translated in frequency

A SSB (Single Side Band) amplitude modulation or similar techniques (ex. QPSK) can be adopted



RF power requirements



The required RF power depends on: • the strength of the instability

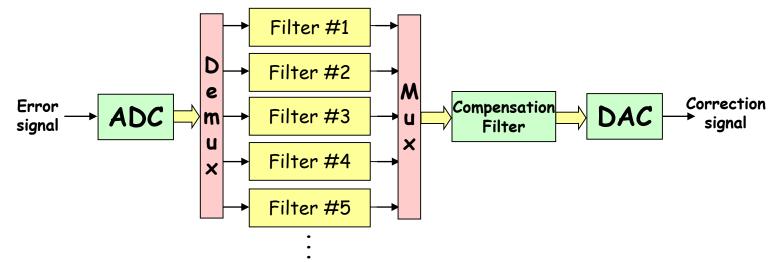
u the maximum oscillation amplitude

If we switch the feedback on when the oscillation is small, the required power is lower

Obvious from formulae: parameter optimization required depending on application:

- injection damping: large initial amplitude, short "ON" time, then silence
- instability damping: in best case starts from "zero amplitude", always "ON"

→ difficult compromise between power bandwidth, max. amplitude, digital resolution (for beams without radiation damping the residual noise from limited detector/digital resolution leads to emittance "heating".)



M channel/filters each dedicated to one bunch: *M* is the number of bunches

To damp the bunch oscillations the turn-by-turn kick signal must be the derivative of the bunch position at the kicker: for a given oscillation frequency a $\pi/2$ phase shifted signal must be generated

In determining the real phase shift to perform in each channel, the phase advance between BPM and kicker must be taken into account as well as any additional delay due to the feedback latency (multiple of one machine revolution period)

The digital processing must also reject any residual constant offset (stable beam component) from the bunch signal to avoid DAC saturation

Digital filters can be implemented with FIR (Finite Impulse Response) or IIR (Infinite Impulse Response) structures. Various techniques are used in the design: ex. frequency domain design and model based design

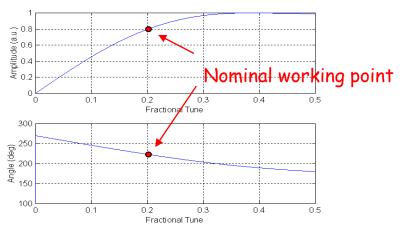
A filter on the full-rate data stream can compensate for amplifier/kicker not-ideal behaviour

k

The minimum requirements are:

- 1. DC rejection (coefficients sum = 0)
- 2. Given amplitude response at the tune frequency
- 3. Given phase response at the tune frequency

A 3-tap FIR filter can fulfil these requirements: the filter coefficients can be calculated analytically



Example:

- Tune $\omega/2\pi = 0.2$
- Amplitude response at tune $|H(\omega)| = 0.8$
- Phase response at tune α = 222°

 $H(z) = -0.63 + 0.49 z^{-1} + 0.14 z^{-2}$

Z transform of the FIR filter response

In order to have zero amplitude at DC, we must put a "zero" in z=1. Another zero in z=c is added to fulfill the phase requirements.

c can be calculated analytically:

$$H(z)=k(1-z^{-1})(1-cz^{-1})$$

$$H(z)=k(1-(1+c)z^{-1}+cz^{-2}) \quad z=e^{j\omega}$$

$$H(\omega)=k(1-(1+c)e^{-j\omega}+ce^{-2j\omega})$$

$$e^{-j\omega}=\cos\omega - j\sin\omega, \quad \alpha=ang(H(\omega))$$

$$tg(\alpha)=\frac{c(\sin(\omega)-\sin(2\omega))+\sin(\omega)}{c(\cos(2\omega)-\cos(\omega))+1-\cos(\omega)}$$

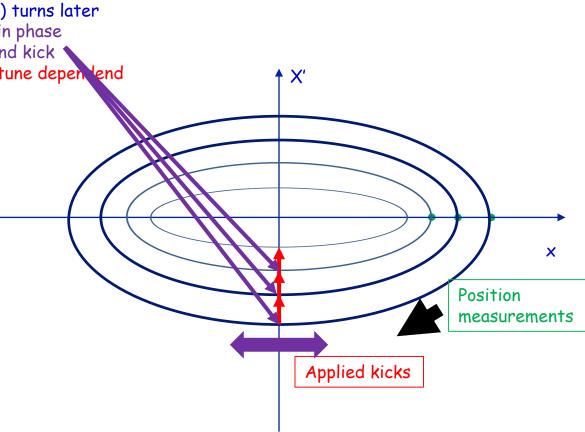
$$c=\frac{tg(\alpha)(1-\cos(\omega))-\sin(\omega)}{(\sin(\omega)-\sin(2\omega))-tg(\alpha)(\cos(2\omega)-\cos(\omega))}$$

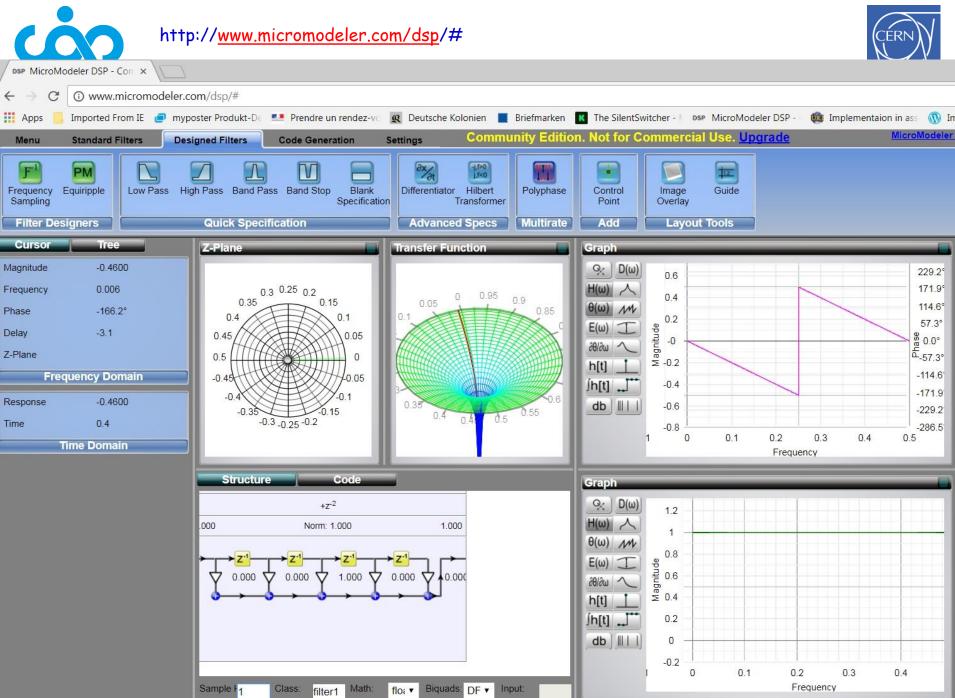
k is determined given the required amplitude response at tune $|H(\omega)|$:

$$=\frac{|H(\omega)|}{\sqrt{(1-(1+c)\cos(\omega)+c\cos(2\omega))^2+((1+c)\sin(\omega)-c\sin(2\omega))^2}}$$

Digital processing imposes a transition delay longer than the revolution time of normal size synchrotrons (few us).

- \rightarrow Feedback acts N (a few) turns later
- → Particles advance N* Q in phase between measurement and kick
- → Correction signal needs tune dependend phase shifter

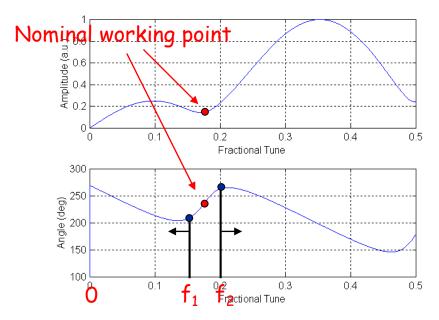




With more degrees of freedom additional features can be added to a FIR filter

Ex.: transverse feedback. The tune frequency of the accelerator can significantly change during machine operations. The filter response must guarantee the same feedback efficiency in a given frequency range by performing automatic compensation of phase changes.

In this example the feedback delay is four machine turns. When the tune frequency increases, the phase of the filter must increase as well, i.e. the phase response must have a positive slope around the working point.



The filter design can be made using the Matlab function *invfreqz()*

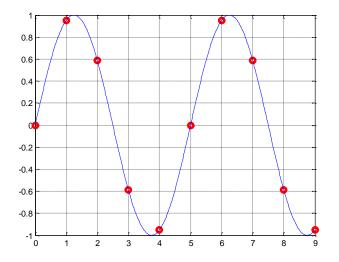
This function calculates the filter coefficients that best fit the required frequency response using the least squares method

The desired response is specified by defining amplitude and phase at three different frequencies: 0, f_1 and f_2

A filter often employed in longitudinal feedback systems is a selective FIR filter which impulse response (the filter coefficients) is a sampled sinusoid with frequency equal to the synchrotron tune

The filter amplitude response has a maximum at the tune frequency and linear phase

The more filter coefficients we use the more selective is the filter



Samples of the filter impulse response (= filter coefficients)



Amplitude and phase response of the filter

Down sampling (longitudinal feedback)

The synchrotron frequency is usually much lower than the revolution frequency: one complete synchrotron oscillation is accomplished in many machine turns

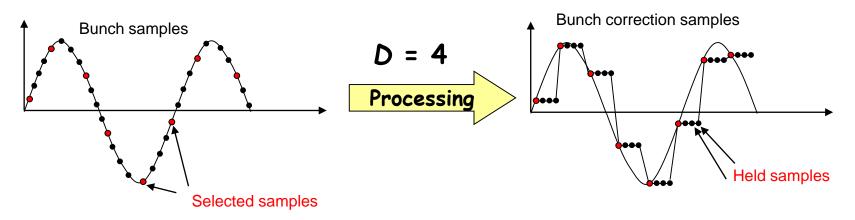
In order to be able to properly filter the bunch signal down sampling is usually carried out

One out of D samples is used: D is the dawn sampling factor

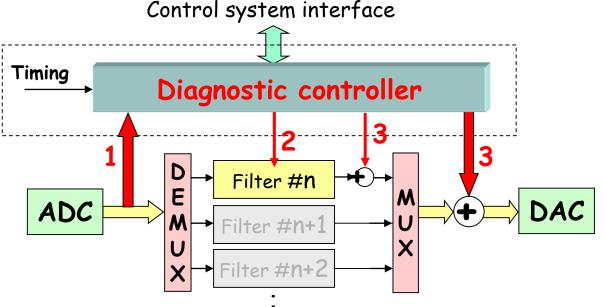
The processing is performed over the down sampled digital signal and the filter design is done in the down sampled frequency domain (the original one enlarged by D)

The turn-by-turn correction signal is reconstructed by a hold buffer that keeps each calculated correction value for D turns

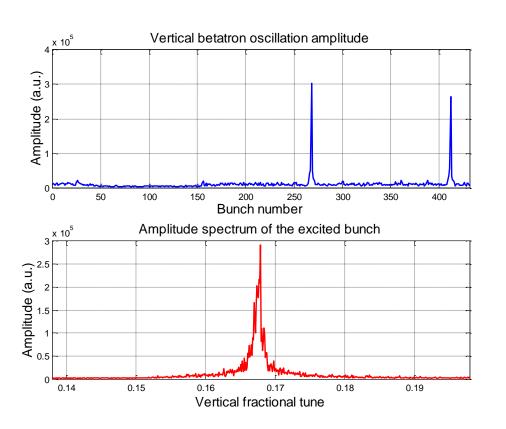
The reduced data rate allows for more time available to perform filter calculations and more complex filters can therefore be implemented

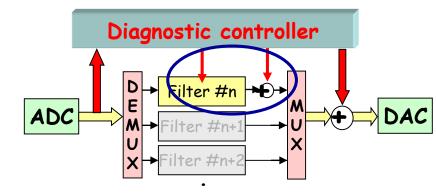


- A feedback system can implement a number of diagnostic tools useful for commissioning and optimization of the feedback system as well as for machine physics studies:
- 1. ADC data recording: acquisition and recording, in parallel with the feedback operation, of a large number of samples for off-line data analysis
- 2. Modification of filter parameters on the fly with the required timing and even individually for each bunch: switching ON/OFF the feedback, generation of grow/damp transients, optimization of feedback performance, ...
- 3. Injection of externally generated digital samples: for the excitation of single/multi bunches



The feedback loop is switched off for one or more selected bunches and the excitation is injected in place of the correction signal. Excitations can be: white (or pink) noise sinusoids



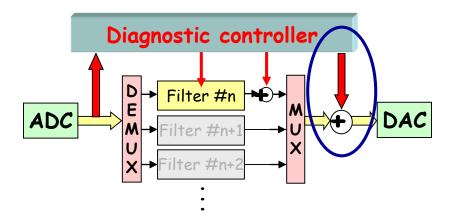


In this example two bunches are vertically excited with pink noise in a range of frequencies centered around the tune, while the feedback is applied on the other bunches.

The spectrum of one excited bunch reveals a peak at the tune frequency

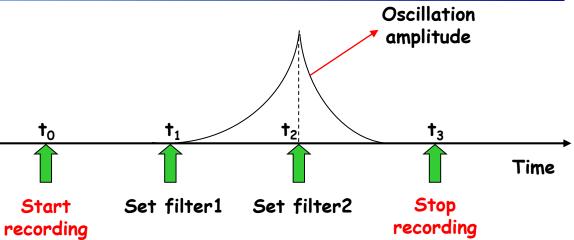
This technique is used to measure the betatron tune with almost no deterioration of the beam quality

Interesting measurements can be performed by adding pre-defined signals in the output of the digital processor



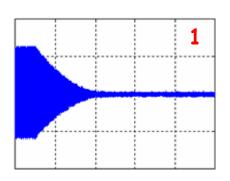
- 1. By injecting a sinusoid at a given frequency, the corresponding beam multi-bunch mode can be excited to test the performance of the feedback in damping that mode
- 2. By injecting an appropriate signal and recording the ADC data with filter coefficients set to zero, the beam transfer function can be calculated
- 3. By injecting an appropriate signal and recording the ADC data with filter coefficients set to the nominal values, the closed loop transfer function can be determined

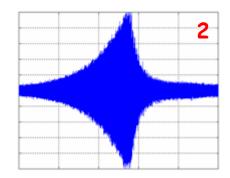
A powerful diagnostic application is the generation of transients. Transients can be generated by changing the filter coefficients accordingly to a predefined timing and by concurrently recording the oscillations of the bunches

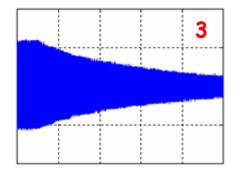


Different types of transients can be generated, damping times and growth rates can be calculated by exponential fitting of the transients:

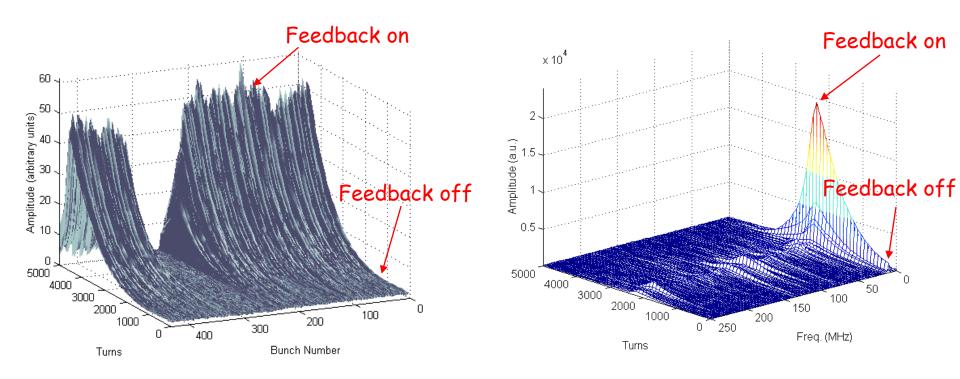
- 1. Constant multi-bunch oscillation \rightarrow FB on: damping transient
- 2. FB on \rightarrow FB off \rightarrow FB on: grow/damp transient
- 3. Stable beam \rightarrow positive FB on (anti-damping) \rightarrow FB off: natural damping transient







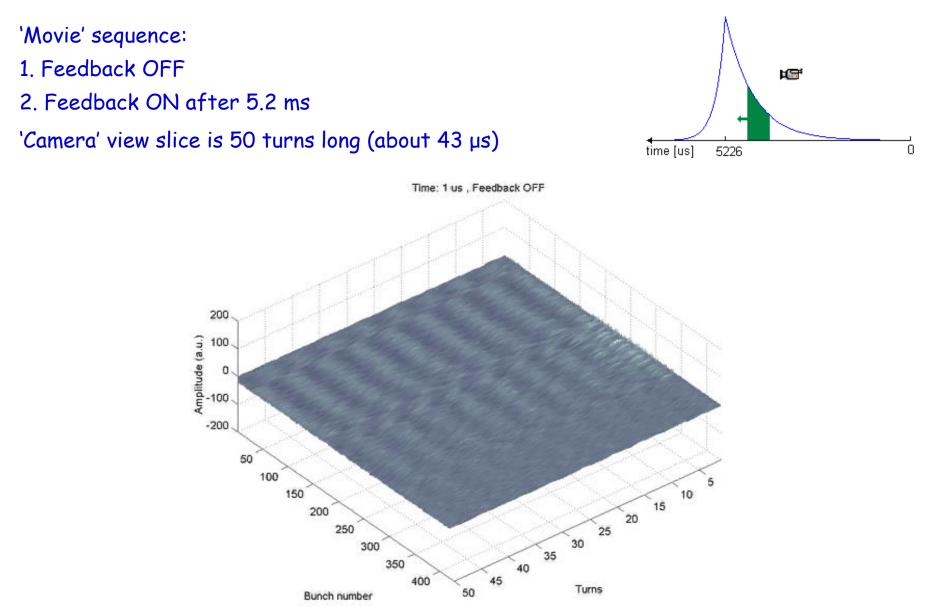
Grow/damp transients can be analyzed by means of 3-D graphs



Evolution of the bunches oscillation amplitude during a grow-damp transient

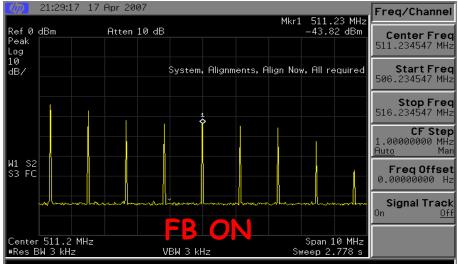
Evolution of coupled-bunch unstable modes during a grow-damp transient

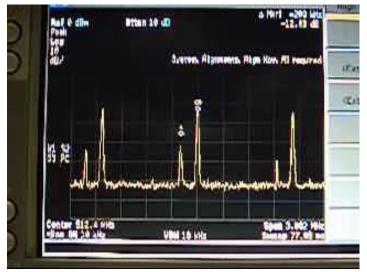
Grow/damp transients: real movie



Effects of a feedback: beam spectrum

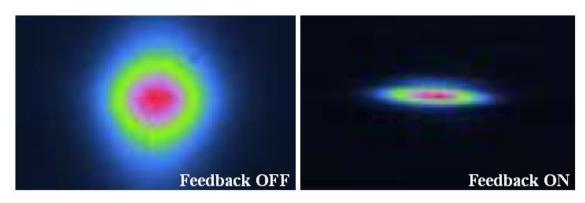




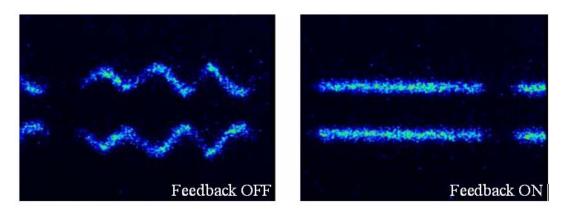


Spectrum analyzer connected to a stripline pickup: observation of vertical instabilities. The sidebands corresponding to vertical coupled-bunch modes disappear as soon as the transverse feedback is activated

Effects of a feedback: transverse and longitudinal profile

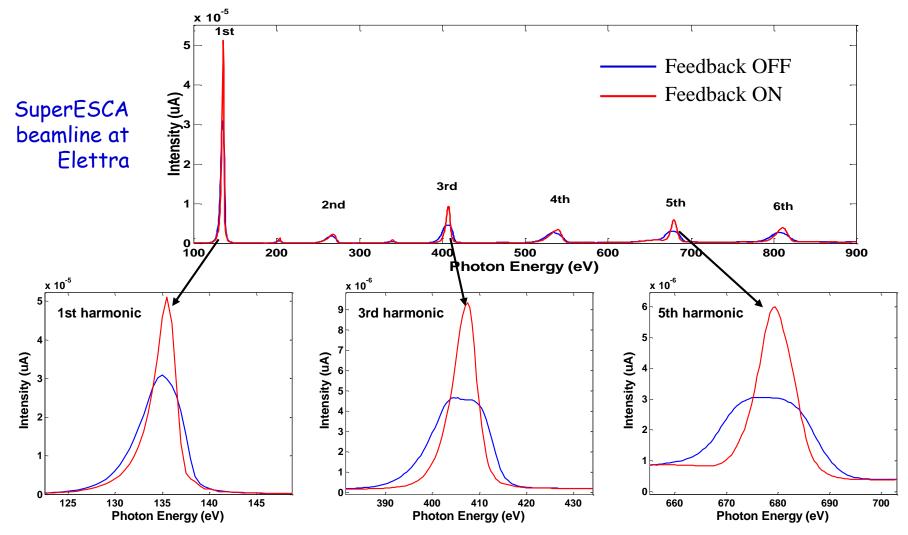


Synchrotron Radiation Monitor images taken at TLS



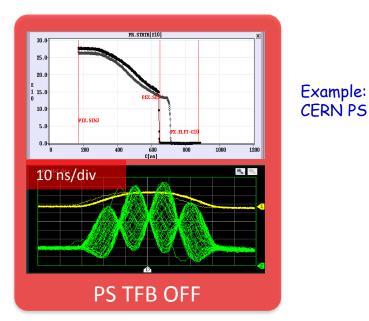
Images of one machine turn taken with a streak camera in 'dual scan mode' at TLS. The horizontal and vertical time spans are 500 and 1.4 ns respectively

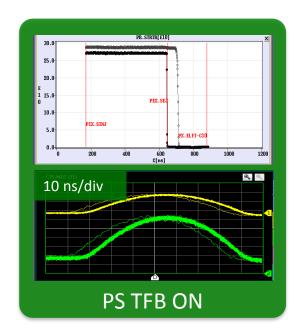
Effects on the synchrotron light: spectrum of photons produced by an undulator The spectrum is noticeably improved when vertical instabilities are damped by the feedback



- Under certain circumstances even single bunches are unstable in an accelerator:
 - wakes of the head of the beam interacting with the tail
 - TMCI: transverse mode coupling instability (later this course)
 - micro bunching
- Can be damped with an active feedback

 \rightarrow depending on bunchlength very high demands on system bandwidth





Single high intensity proton bunch, TMCI unstable

Feedback OFF

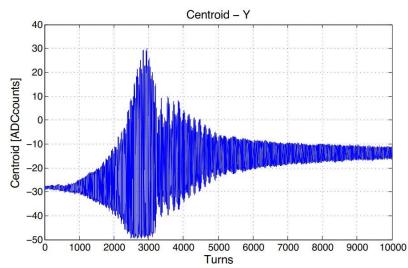


Figure 3: Open-Loop (no feedback) time-domain recording of bunch motion, Q26 lattice, vertical centroid via bunch samples. Unstable bunch motion grows from injection, with charge loss, then stability at roughly turn 3000.

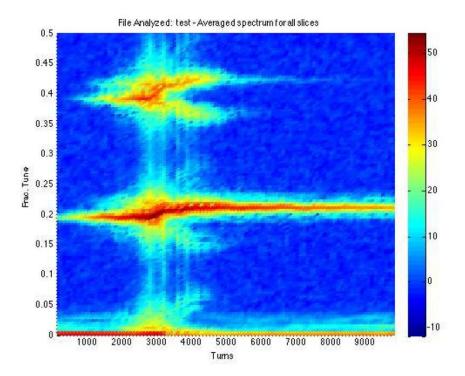
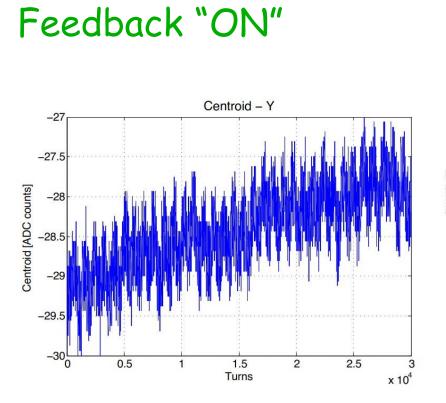


Figure 4: Open-Loop (no feedback) spectrogram of same transient as Figure 3. The beam is TMCI unstable in these conditions, $\nu_y = 0.185 \nu_s = 0.006$. Unstable modes 1 and 2 begin at turn 2000 and with charge loss end at turn 4500. Significant intensity-dependent tune shifts are seen as charge is lost in the transient.



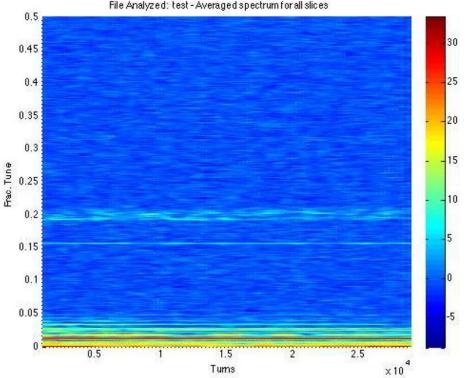


Figure 5: Closed -Loop (feedback on) time-domain recording of bunch motion, bunch samples averaged to show the vertical centroid. The same beam conditions as Figure 3 (TMCI unstable) but motion is controlled by the feedback system. Vertical sensitivity is roughly 14 μ m/count

Figure 6: Closed-Loop (feedback on) spectrogram of Figure 5 transient. The beam is TMCI unstable in these conditions, Q26 lattice, $\nu_y = 0.185 \nu_s = 0.006$. The feedback control keeps the mode 1 and 2 unstable motion at the noise floor of the feedback receiver, or roughly 3 microns. A small amount of motion at mode zero is seen, this driven motion is reduced by the feedback gain.

Without derivation: emittance growth from injection errors

$$\frac{\varepsilon}{\varepsilon_0} = 1 + \frac{1}{2} \frac{\Delta x^2 + (\beta \Delta x' + \alpha \Delta x)^2}{\beta \varepsilon_0} \left(\frac{1}{1 + \tau_{DC} / \tau_d} \right)^2$$

 ε_0 : beam emittance before injection

 ε : beam emittance after damped injection oscillation

 τ_{DC} : damping time of active feedback system

 τ_d : filamentation time

- Δx : position error at injection
- $\Delta x'$ angle error at injection
- α,β : twiss parameters at injection point

Even after perfect beam steering not all bunches can be injected into the LHC without position and/or angle error due to pulse-shape of kicker magnets

- \rightarrow unwanted emittance growth
- \rightarrow loss in luminosity/bunch instabilities

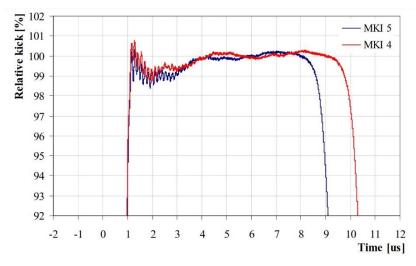


Figure 3: Measured LHC MKI injection kicker waveform, for different magnets and different pulse lengths.

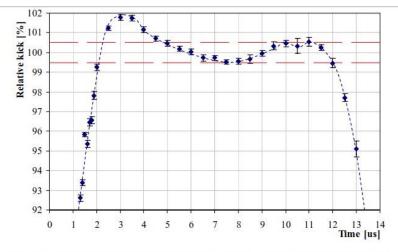


Figure 1: Ripple of SPS LSS6 extraction kickers (LHC beam 1) measured with beam.

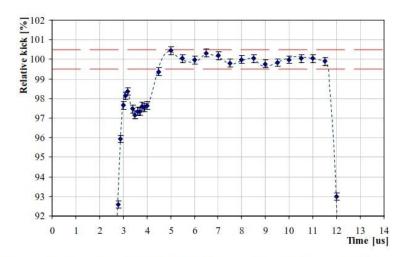


Figure 2: Ripple of SPS LSS4 extraction kickers (LHC beam 2) measured with beam.

Simulated emittance growth on various bunches after injection into the LHC:

tolerance is 2.5% emittance growth

only a few bunches above 1% emittance growth

Figures on past three slides from: Emittance growth at the LHC injection from SPS and LHC kicker ripple, G. Kotzian et al, EPAC 2008

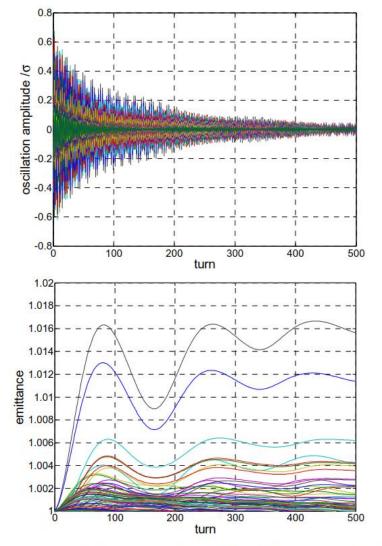


Figure 5: Evolution of single bunch oscillation amplitudes (top) and emittance increases (bottom) as a function of time after injection, using the measured MKI kick.

Marco Lonza (Elletra) for his splendid animations

▶ Many papers about coupled-bunch instabilities and multi-bunch feedback systems (PETRA, KEK, SPring-8, Da⊕ne, ALS, PEP-II, SPEAR, ESRF, Elettra, SLS, CESR, HERA, HLS, DESY, PLS, BessyII, SRRC, SPS, LHC, ...)

Intrabunch feedback at the SPS:
 Wideband vertical intra-bunch feedback at the SPS
 J. Fox (SLAC), W.Hofle (CERN) et al., proceedings of IPAC 2015, Richmond USA

Injection damping: Verena Kain; CAS in Erice 2017

1. 3 slides : Power requirements for transverse dampers

power requirements: transverse feedback

 $0 \beta(s)$

The transverse motion of a bunch of particles not subject to damping or excitation can be described as a pseudo-harmonic oscillation with amplitude proportional to the square root of the β -function

The derivative of the position, i.e. the angle of the trajectory is:

By introducing $\alpha = -\frac{\beta'}{2}$

i.e.
$$x' = -\frac{a}{\sqrt{\beta}} \sin \varphi + \frac{a\beta'}{2\sqrt{\beta}} \cos \varphi$$
, with $\varphi' = \frac{1}{\beta}$
we can write: $x' = \frac{a}{\sqrt{\beta}} \sqrt{1 + \alpha^2} \sin(\varphi + \arctan \alpha)$

 $x(s) = a \sqrt{\beta(s)} \cos \varphi(s)$, where $\varphi(s) = \int \frac{ds}{ds}$

At the coordinate S_k , the electromagnetic field of the kicker deflects the particle bunch which varies its angle by k : as a consequence the bunch starts another oscillation

 $x_1 = a_1 \sqrt{\beta} \cos \varphi_1$ which must satisfy the following constraints:

$$\begin{cases} x(s_k) = x_1(s_k) \\ x'(s_k) = x_1'(s_k) + k \end{cases}$$

By introducing

$$A = a\sqrt{\beta}, A_1 = a_1\sqrt{\beta}$$
 the two-equation two-unknown-variables system becomes

$$\begin{cases} A\cos\varphi = A_{1}\cos\varphi_{1} \\ A\frac{\sqrt{1+\alpha^{2}}}{\beta}\sin(\varphi + arctg(\alpha)) = A_{1}\frac{\sqrt{1+\alpha^{2}}}{\beta}\sin(\varphi_{1} + arctg(\alpha)) + A_{1}\frac{\sqrt{1+\alpha^{2}}}{\beta}\sin(\varphi_{1} + arctg(\alpha)) + A_{2}\frac{\sqrt{1+\alpha^{2}}}{\beta}\sin(\varphi_{1} + arctg(\alpha)) + A_{2}\frac{\sqrt{1+\alpha^{2}}}{\beta}\cos(\varphi_{1} + arctg(\alpha)) + A_{2}\frac{\sqrt{$$

The solution of the system gives amplitude and phase of the new oscillation:

$$\begin{cases} A_{1} = \sqrt{\left(A\sin\varphi - k\beta\right)^{2} + A^{2}\cos^{2}\varphi} \\ \varphi_{1} = \arccos\left(\frac{A}{A_{1}}\cos\varphi\right) \end{cases}$$

power requirements: transverse feedback

From
$$A_1 = \sqrt{\left(A\sin\varphi - k\beta\right)^2 + A^2\cos^2\varphi}$$
 if the kick is small $\left(k < <\frac{A}{\beta}\right)$ then $\frac{\Delta A}{A} = \frac{A - A_1}{A} \cong \frac{\beta}{A} k \sin\varphi$

In the linear feedback case, i.e. when the turn-by-turn kick signal is a sampled sinusoid proportional to the bunch oscillation amplitude, in order to maximize the damping rate the kick signal must be in-phase with $\sin \varphi$, that is in quadrature with the bunch oscillation Δ

$$k = g \frac{A}{\beta} \sin \varphi$$
 with $0 < g < 1$

The optimal gain g_{opt} is determined by the maximum kick value k_{max} that the kicker is able to generate. The feedback gain must be set so that k_{max} is generated when the oscillation amplitude A at the kicker location is maximum: $g_{opt} = \frac{k_{max}}{A_{max}}\beta$ Therefore $k = \frac{k_{max}}{A_{max}}A\sin\varphi$

For small kicks $\frac{\Delta A}{A} \cong \frac{k_{\max}}{A_{\max}} \beta \sin^2 \varphi$ the relative amplitude decrease is $\left\langle \frac{\Delta A}{A} \right\rangle \cong \frac{\beta k_{\max}}{2 A_{\max}}$

The average relative decrease is therefore constant, which means that, in average, the amplitude decrease is exponential with time constant τ (damping time) given by:

$$\frac{1}{\tau} = \left\langle \frac{\Delta A}{A} \right\rangle \frac{1}{T_0} = \frac{\beta k_{\text{max}}}{2 A_{\text{max}} T_0}$$

where T_0 is the revolution period.

By referring to the oscillation at the BPM location:

$$\frac{1}{\tau} = \frac{k_{\max}}{2 T_0 A_{B\max}} \sqrt{\beta_{\kappa} \beta_{B}}$$

 A_{Bmax} is the max oscillation amplitude at the BPM

For relativistic particles, the change of the transverse momentum p of the bunch passing through the kicker can be expressed by:

$$\Delta p = \frac{e}{c} V_{\perp} \qquad \text{where} \qquad V_{\perp} = \int_{0}^{L} (\overline{E} + c \times \overline{B})_{\perp} dz \qquad \text{is the kick voltage and} \qquad p = \frac{E_{B}}{c}$$

e = electron charge, c = light speed, $\overline{E}, \overline{B}$ = fields in the kicker, L = length of the kicker, E_B = beam energy

 V_{\perp} can be derived from the definition of kicker shunt impedance: $R_{k} = \frac{V_{\perp}^{2}}{2P_{k}}$

The max deflection angle in the kicker is given by:

$$k_{\max} = \frac{\Delta p}{p} = e \frac{V_{\perp}}{E_{\scriptscriptstyle B}} = \left(\frac{e}{E_{\scriptscriptstyle B}}\right) \sqrt{2P_{\scriptscriptstyle K}R_{\scriptscriptstyle K}}$$

From the previous equations we can obtain the power required to damp the bunch oscillation with time constant τ :

$$\mathbf{P}_{K} = \frac{2}{R_{K}\beta_{K}} \left(\frac{E_{B}}{e}\right)^{2} \left(\frac{T_{0}}{\tau}\right)^{2} \left(\frac{A_{B\max}}{\sqrt{\beta_{B}}}\right)^{2}$$