

Beam-Beam Effects

Tatiana Pieloni

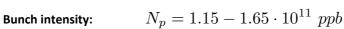
Laboratory of Particle Accelerator Physics EPF Lausanne

CERN Advanced Accelerator Physics School 2017 Royal Holloway University of London

Colliders

$$E^* \approx 2 \times E$$

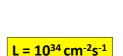
$$L \propto \frac{N_p^2}{\sigma_x \sigma_y} \cdot n_b \cdot f_{rev}$$



Transverse Beam size: $\sigma_{x,y} = 16 - 30 \; \mu m$

Number of bunches 1370-2808

Revolution frequency $11 \; kHz$



 (X_2, Y_2)

When do we have beam-beam effects?

They occur when two beams get closer and collide

➤Two types

➤ High energy collisions between two particles (wanted)

Distortions of beam by electromagnetic forces (unwanted) (X_1, Y_1)

➤ Unfortunately: usually both go together...

>0.001% (or less) of particles collide

> 99.999% (or more) of particles are distorted

Beam-beam effects: overview

- Circular Colliders: interaction occurs at every turn and beams have to be preserved for hours (10-14 hours)
 - Many effects and problems
 - Try to understand some of them
 - Several Observations
- Overview of selected effects (single particle and multi-particle effects)
- Qualitative and physical picture of the effects
- Observations from colliders
- Mathematical derivations and more info in References [1,3,4] or at

Beam-beam webpage http://lhc-beam-beam.web.cern.ch/lhc-beam-beam/ And CAS Proceedings

Beams EM potential

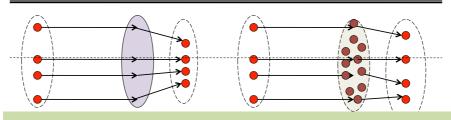
- **▶**Beam is a collection of charges
- **▶**Beam is an electromagnetic potential for other charges

Force on itself (space charge) opposing beam (beam-beam effects)

Single particle motion and whole bunch motion distorted

Focusing quadrupole

Opposite Beam



A beam acts on particles like an electromagnetic lens, but...

Beam-Beam Mathematics

General approach in electromagnetic problems Reference[5] already applied to beam-beam interactions in Reference[1,3, 4]

$$\Delta U = -\frac{1}{\epsilon_0} \rho(x,y,z)$$

Derive potential from Poisson equation for charges with distribution ρ

$$U(x,y,z,\sigma_x,\sigma_y,\sigma_z) = \frac{1}{4\pi\epsilon_0} \int \int \int \frac{\rho(x_0,y_0,z_0) dx_0 dy_0 dz_0}{\sqrt{(x-x_0)^2+(y-y_0)^2+(z-z_0)^2}}$$

$$\overrightarrow{E} = -\nabla U(x,y,z,\sigma_x,\sigma_y,\sigma_z)$$
 Then compute the fields
$$\overrightarrow{F} = q(\overrightarrow{E} + \overrightarrow{v} \times \overrightarrow{B})$$
 From Lorentz force one calculates the force acting on test particle with charge q

$$\overrightarrow{E} = -\nabla U(x, y, z, \sigma_x, \sigma_y, \sigma_z)$$

$$\overrightarrow{F} = q(\overrightarrow{E} + \overrightarrow{v} \times \overrightarrow{B})$$

Making some assumptions we can simplify the problem and derive analytical formula for the force...

Round Gaussian distribution:

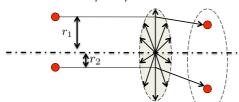
Gaussian distribution for charges Round beams:

Very relativistic, Force has only radial component:

$$F \propto \frac{N_p}{\sigma} \cdot \frac{1}{r} \cdot \left[1 - e^{-\frac{r^2}{2\sigma^2}}\right]$$

$$\Delta r' = \frac{1}{mc\beta\gamma} \int F_r(r, s, t) \ dt$$

$$\Delta r' = -\frac{N_p r_0}{r} \cdot \frac{r}{r^2} [1 - e^{-\frac{r^2}{2\sigma^2}}]$$



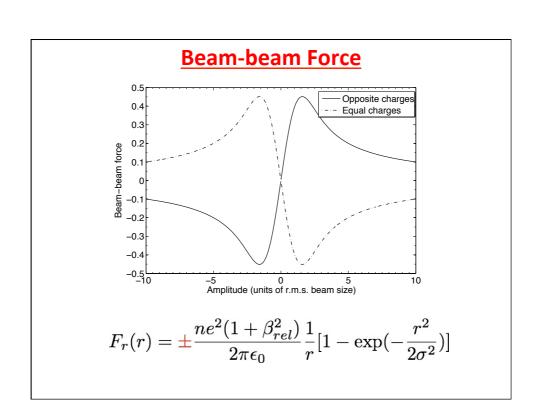
$$\sigma_x = \sigma_y = \sigma$$
$$\beta \approx 1 \qquad r^2 = x^2 + y^2$$

Beam-beam Force

Beam-beam kick obtained integrating the force over the collision (i.e. time of passage)

Only radial component in relativistic case

How does this force looks like?



Pushing for luminosity means stronger beam-beam effects

$$\mathcal{L} \propto rac{N_p^2}{\sigma_x \sigma_y} \cdot n_b$$

$$F \propto \frac{N_p}{\sigma} \cdot \frac{1}{r} \cdot \left[1 - e^{-\frac{r^2}{2\sigma^2}}\right]$$

Strongest non-linearity in a collider YOU CANNOT AVOID!

Physics fill lasts for many hours 10h - 24h

Two main questions:

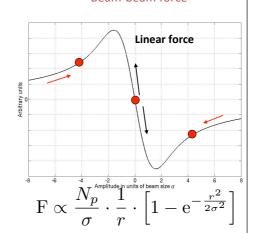
What happens to a single particle? What happens to the whole beam?

Beam-Beam Force: single particle...

Lattice defocusing quadrupole

$F=-k\cdot r$

Beam-beam force



For small amplitudes: linear force

For larger amplitudes $(x > 1 \sigma)$: very non-linear!

The beam will act as a strong non-linear electromagnetic lens!

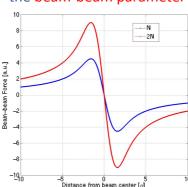
Beam-Beam parameter

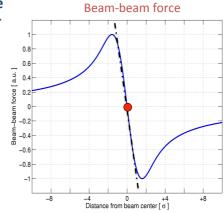
Quantifies the strength of the force but does NOT reflect the nonlinear nature of the force

For small amplitudes $r \rightarrow 0$

$$F \propto -\xi \cdot r$$

The slope of the force gives you the beam-beam parameter ξ





$$\Delta r' = -\frac{N_p r_0}{r} \cdot \frac{r}{r^2} \cdot \left[1 - e^{-\frac{r^2}{2\sigma^2}}\right]$$

$$\Delta r' = \frac{2N_p r_0}{\gamma} \cdot \frac{1}{r} \cdot \left[1 - \left(1 - \frac{r^2}{2\sigma^2} + \dots \right) \right]$$

Beam-Beam parameter:

For round beams:

$$\xi = \frac{\beta^*}{4\pi} \cdot \frac{\delta(\Delta r')}{\delta r} = \frac{Nr_0\beta^*}{4\pi\gamma\sigma^2} \qquad \xi_{x,y} = \frac{Nr_0\beta^*_{x,y}}{2\pi\gamma\sigma_{x,y}(\sigma_x + \sigma_y)}$$

For non-round beams:

$$\xi_{x,y} = \frac{Nr_0 \beta_{x,y}^*}{2\pi \gamma \sigma_{x,y} (\sigma_x + \sigma_y)}$$

Examples:

Parameters	LEP (e+e-)	LHC(pp)
Intensity N _{p,e} /bunch	4 10 ¹¹	1.15 10 ¹¹
Energy GeV	100	7000
Beam size H	160-200 μm	16.6 μm
Beam size V	2-4 μm	16.6 μm
$\beta_{x,y}^*$ m	1.25-0.05	0.55-0.55
Crossing angle µrad	0	285
ξ _{bb/IP}	0.08	0.0037

LHC 2015
1.7 10 ¹¹
1.7 10
6500
18 μm
18 μm
0.4-0.4
290
0.009

HL-LHC
2.2 10 ¹¹
7000
10 μm
10 μm
0.15-0.15
590
0.01

B-factory maximum beam-beam parameter of 0.16

1 turn map with linearized BB

For small amplitudes beam-beam can be approximated as linear force as a quadrupole

$$F \propto -\xi \cdot r$$

Focal length: $\frac{1}{f} = \frac{\Delta x'}{x} = \frac{Nr_0}{\gamma\sigma^2} = \frac{\xi\cdot 4\pi}{\beta^*}$

Beam-beam matrix:
$$\left(\begin{array}{cc} 1 & 0 \\ -\frac{\xi \cdot 4\pi}{\beta^*} & 1 \end{array} \right)$$

Perturbed one turn matrix with perturbed tune ΔQ and beta function at the IP β^* :

the IP
$$\beta^*$$
:
$$\begin{pmatrix} \cos(2\pi(Q+\Delta Q)) & \beta^*\sin(2\pi(Q+\Delta Q)) \\ -\frac{1}{\beta^*}\sin(2\pi(Q+\Delta Q)) & \cos(2\pi(Q+\Delta Q)) \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ -\frac{1}{2f} & 1 \end{pmatrix} \cdot \begin{pmatrix} \cos(2\pi Q) & \beta_0^*\sin(2\pi Q) \\ -\frac{1}{\beta_0^*}\sin(2\pi Q) & \cos(2\pi Q) \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ -\frac{1}{2f} & 1 \end{pmatrix}$$

Linear tune shift and beta beating

Solving the one turn matrix one can derive the tune shift ΔQ and the perturbed beta function at the IP β^* :

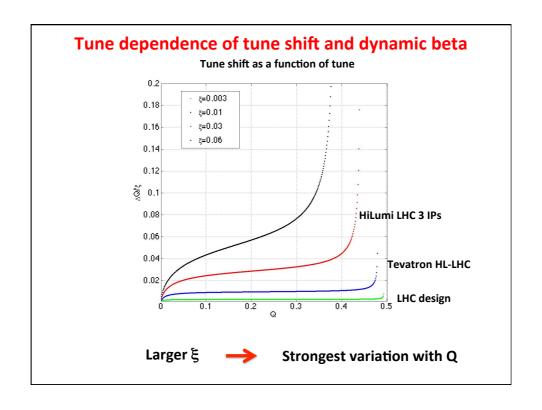
Tune is changed

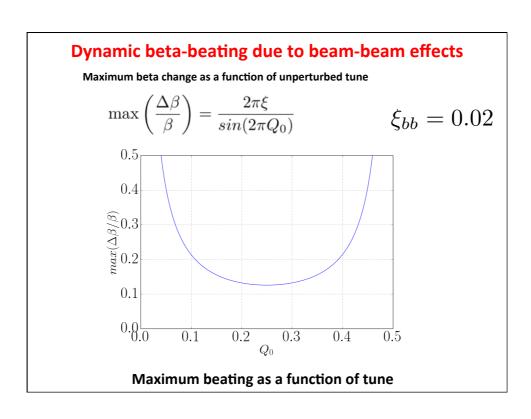
$$cos(2\pi(Q + \Delta Q)) = cos(2\pi Q) - \frac{\beta_0^* \cdot 4\pi \xi}{\beta^*} sin(2\pi Q)$$

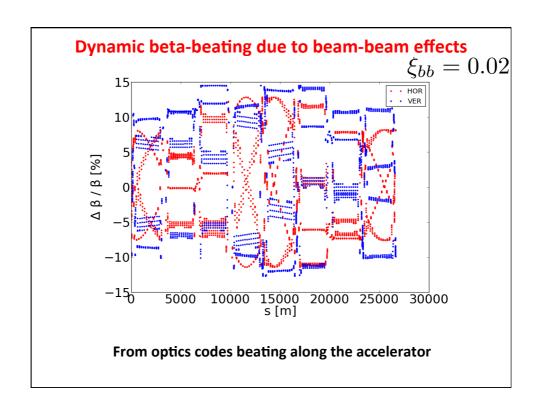
β-function is changed:

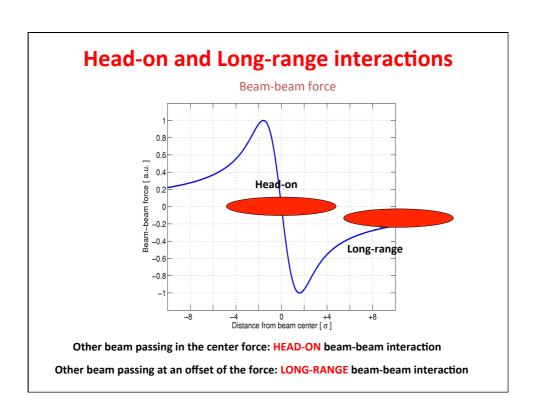
$$\frac{\beta^*}{\beta_0^*} = \frac{\sin(2\pi Q)}{\sin(2\pi(Q + \Delta Q))}$$

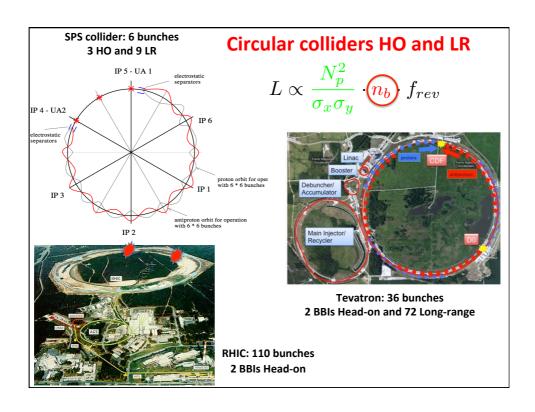
...how do they change?

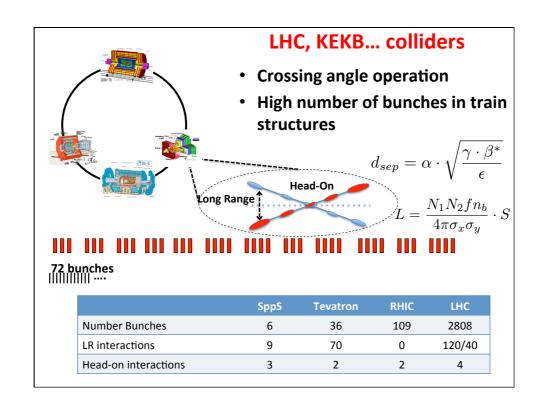


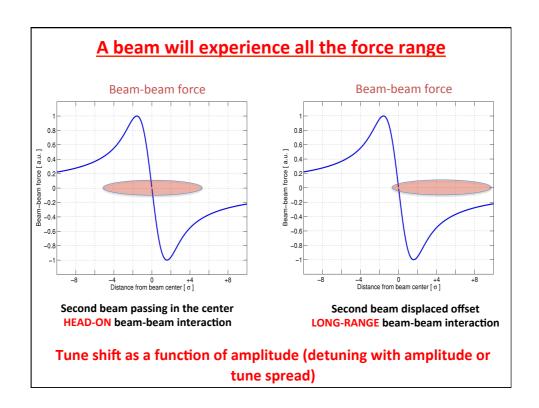


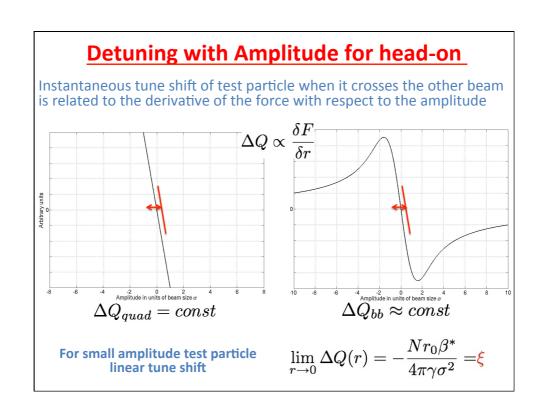


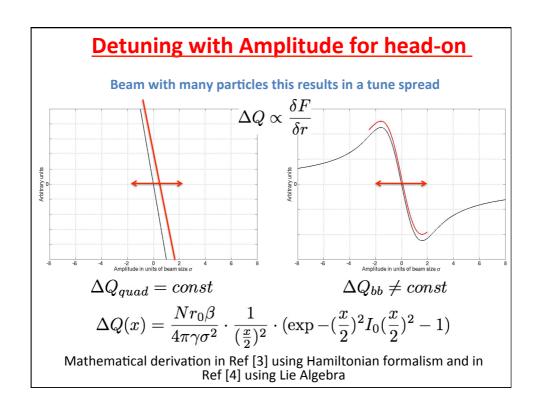


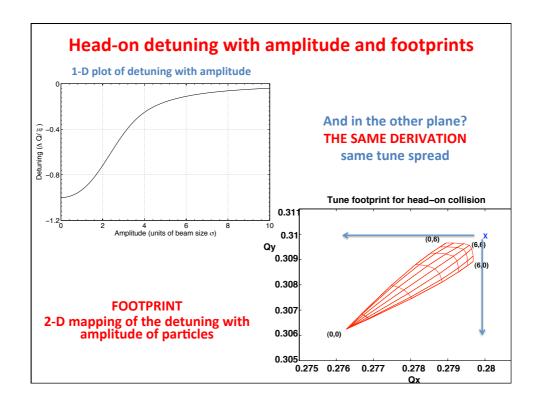


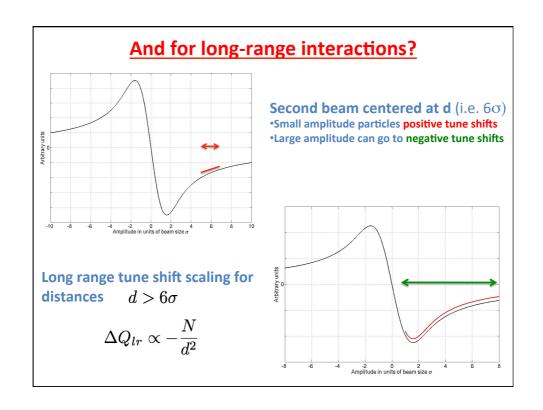


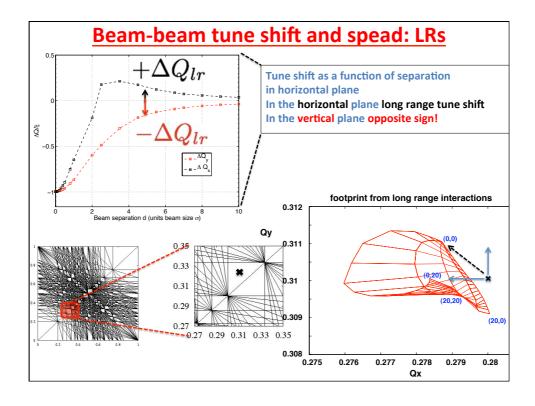


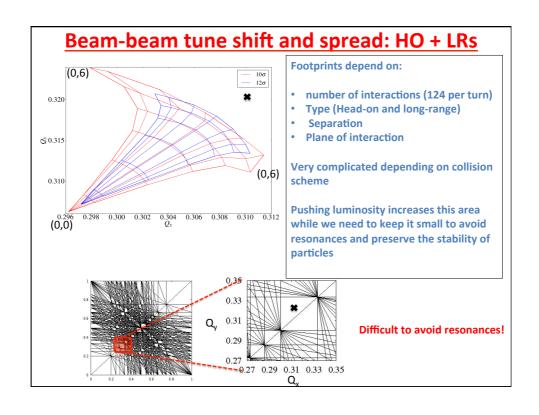


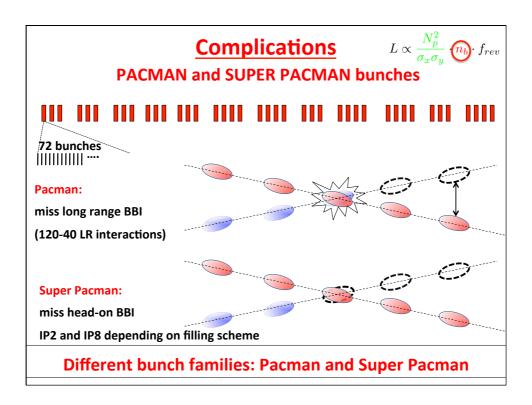


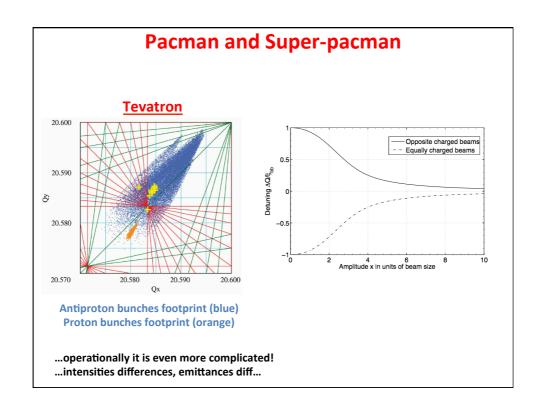


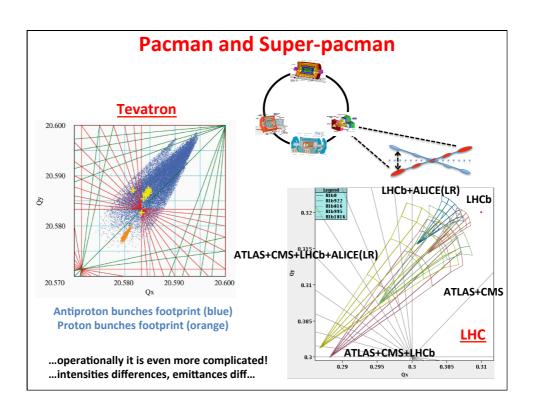






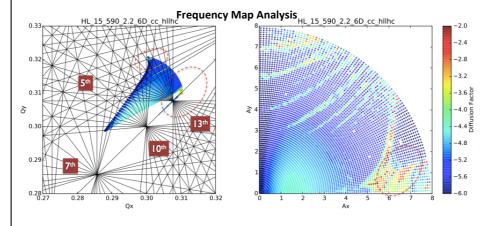






Non-linear dynamics and Particle Losses

Dynamic Aperture: area in amplitude space with stable motion Stable area of particles depends on beam intensity and crossing angle

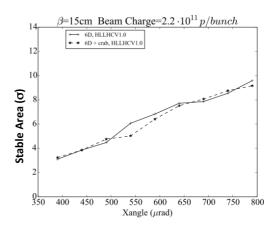


Stable area depends on beam-beam interactions therefore the choice of running parameters (crossing angles, β^* , intensity) is the result of careful study of different effects!

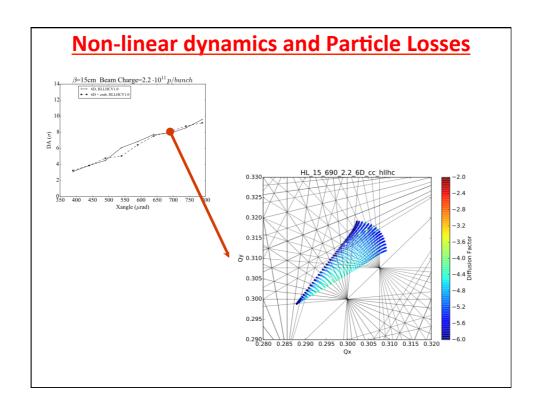
Non-linear dynamics and Particle Losses

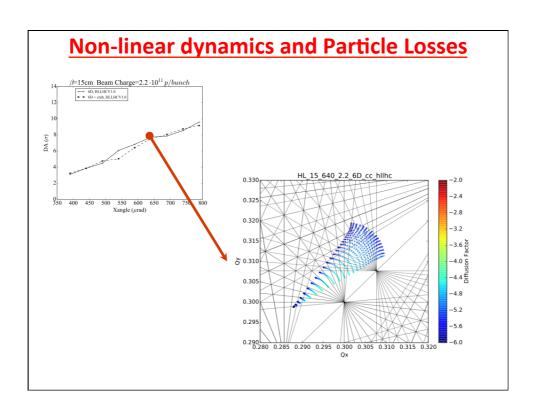
Dynamic Aperture: area in amplitude space with stable motion Stable area of particles depends on beam intensity and crossing angle

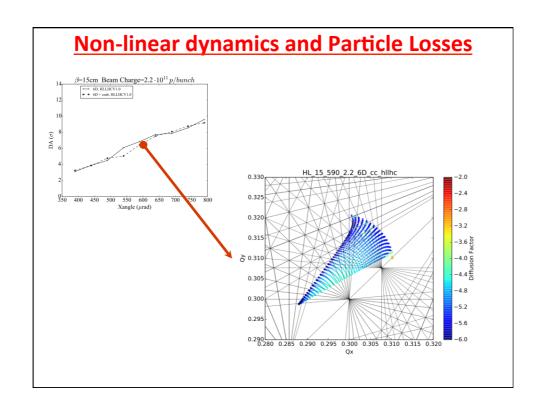
$$d_{sep} = \alpha \cdot \sqrt{\frac{\gamma \cdot \beta^*}{\epsilon}}$$

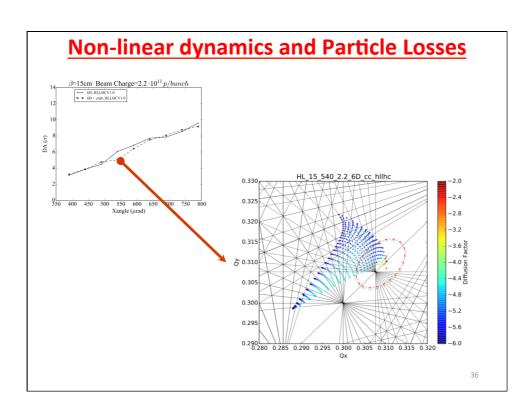


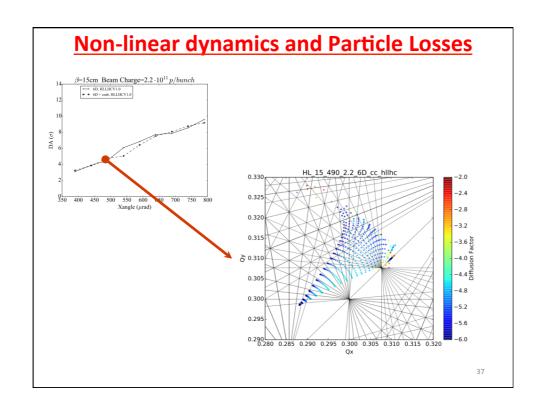
Stable area depends on beam-beam interactions therefore the choice of running parameters (crossing angles, β^* , intensity) is the result of careful study of different effects!

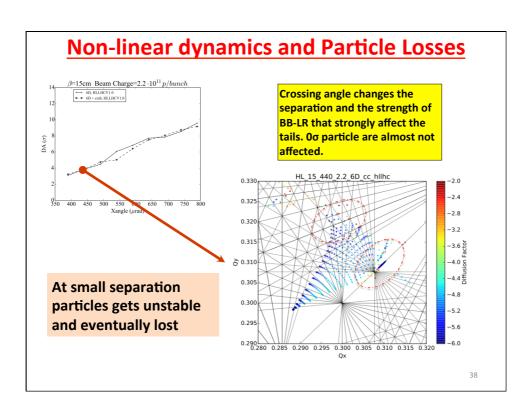








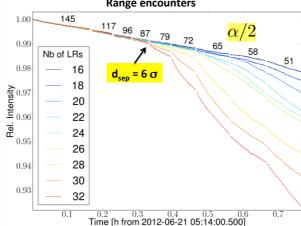




Non-linear dynamics and Particle Losses

Bunch losses for different families of Long-Range encounters

Beam-Beam separation at first LR



$$d_{sep} = \alpha \cdot \sqrt{\frac{\gamma \cdot \beta^*}{\epsilon}}$$

At small separations particles motion becomes chaotic and particles are eventually lost.

The loss rate depends on number of long range encounters and beam-beam parameter

The on-set of losses and the loss rates can be related to dynamic aperture

Long-range BB and Orbit Effects

Long Range Beam-beam interactions lead to orbit effects

Long range kick

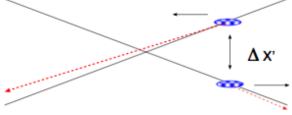
$$\Delta x'(x+d,y,r) = -\frac{2Nr_0}{\gamma} \frac{(x+d)}{r^2} [1 - \exp(-\frac{r^2}{2\sigma^2})]$$

For well separated beams

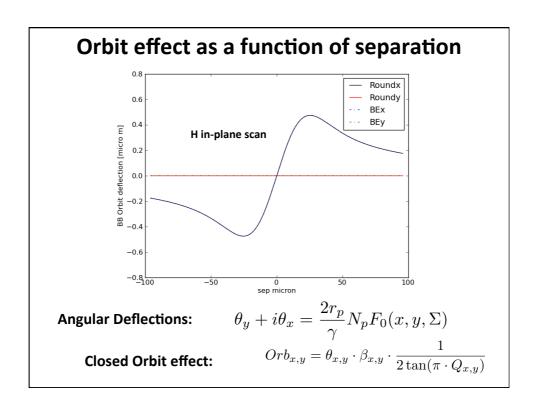
$$d \gg \sigma$$

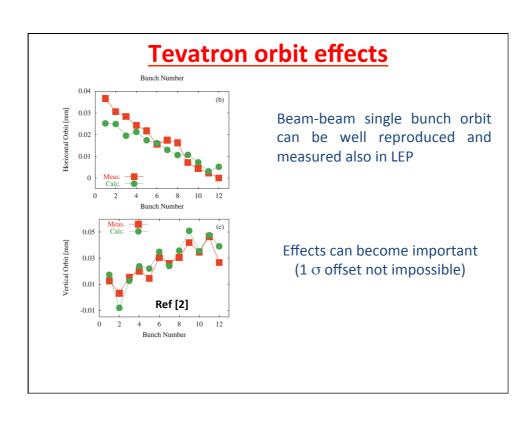
The force has an amplitude independent contribution: ORBIT KICK

$$\Delta x' = \frac{const}{d} \left[1 - \frac{x}{d} + O(\frac{x^2}{d^2}) + \dots \right]$$

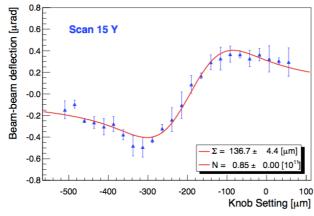


Orbit can be corrected but we should remember PACMAN effects





Orbit effect as a function of separation



Angular Deflections:

$$\theta_y + i\theta_x = \frac{2r_p}{\gamma} N_p F_0(x, y, \Sigma)$$
$$Orb_{x,y} = \theta_{x,y} \cdot \beta_{x,y} \cdot \frac{1}{2\tan(\pi \cdot Q_{x,y})}$$

Closed Orbit effect:

$$Orb_{x,y} = \theta_{x,y} \cdot \beta_{x,y} \cdot \frac{1}{2\tan(\pi \cdot Q_{x,y})}$$

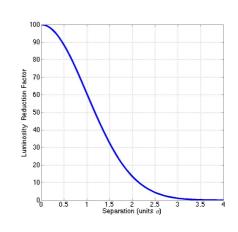
Orbit can be corrected but we should remember PACMAN effects

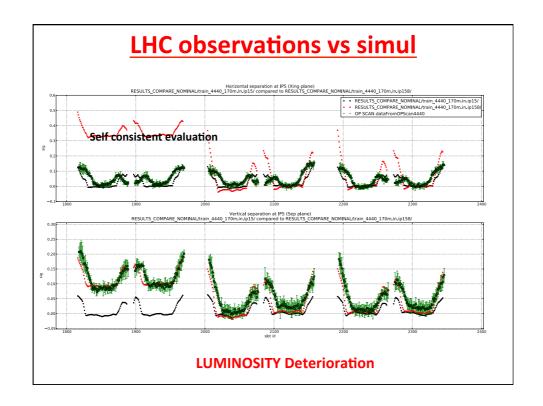
LHC observations

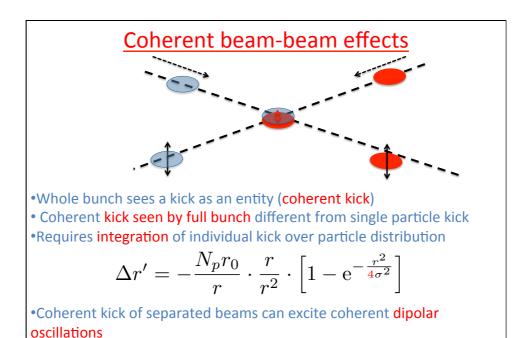
Many long range interactions could become important effect! Holes in bunch structure leads to PACMAN effects this cannot be corrected!

$$L = L_0 \cdot e^{-\frac{d^2}{4\sigma_x^2}}$$

Orbit Effects due to long-range beam-beam effects should be kept SMALL to avoid loss of luminosity!

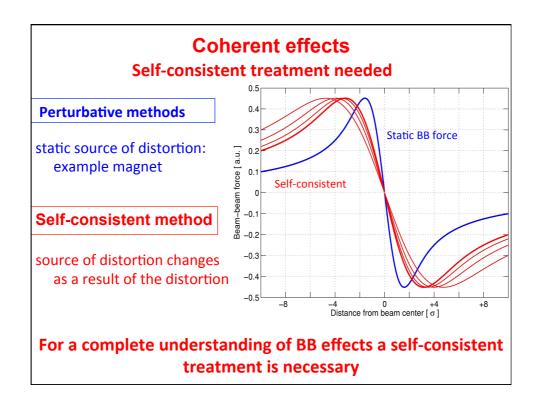


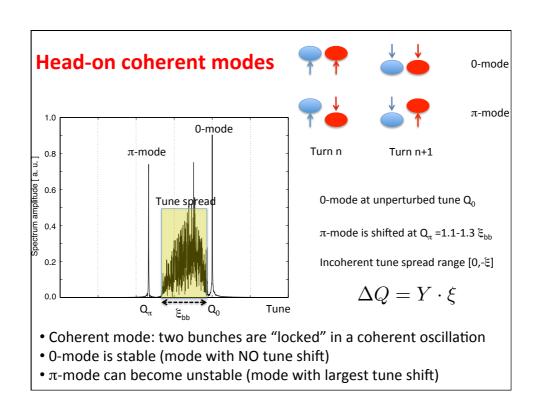


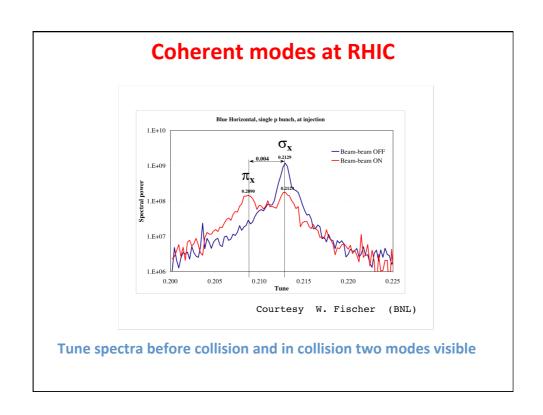


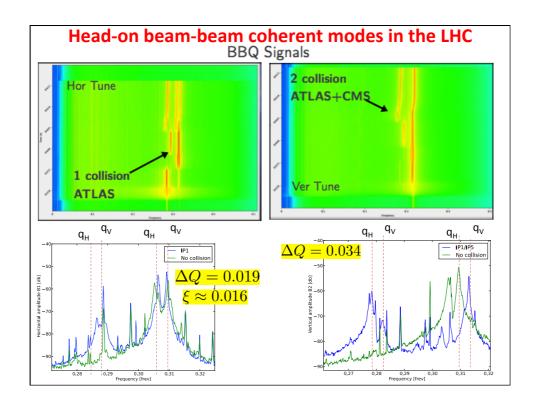
•All bunches couple because each bunch "sees" many opposing

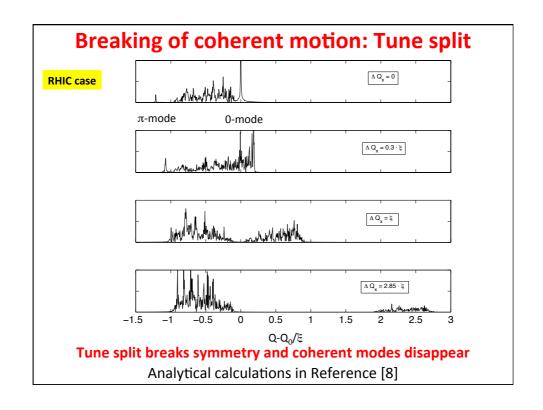
bunches(LR): many coherent modes possible!

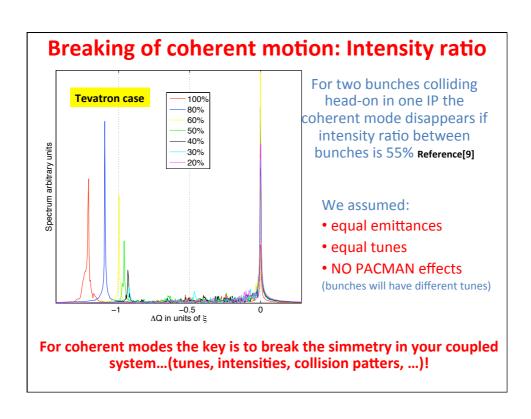


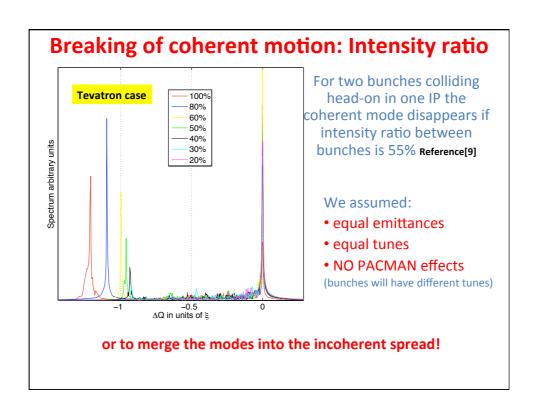


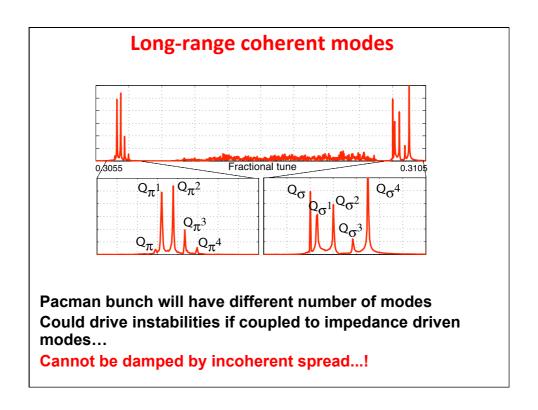


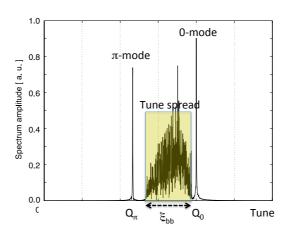






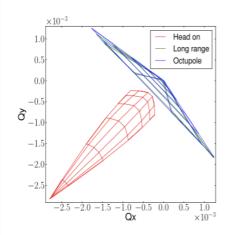


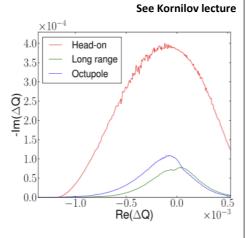




Incoherent tune spread is the Landau damping region any mode with frequency laying in this range should not develop

Tune spread positive effects: Landau damping

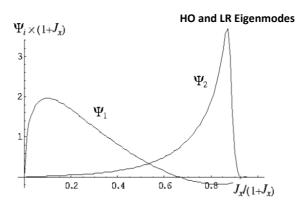




Head-on spread and Landau damping most effective if compared to octupoles or long-range spreads.

Effective to damp impedance and head-on beam-beam modes! Cannot damp long-range modes!

Tune spread positive effects: Landau damping



Ref[12]

Different particles are involved in the coherent motion and in the Landau damping...

HO modes are due to core particle oscillation as the spread→ Landau damping effective!

LR modes are due to bunch tails oscillations → NO Landau damping!

Special observation in Leptons

From our known formulas:

$$L = \frac{N_1 N_2 f n_b}{4\pi \sigma_x \sigma_y} \quad \xi_{x,y} = \frac{N r_0 \beta_{x,y}^*}{2\pi \gamma \sigma_{x,y} (\sigma_x + \sigma_y)}$$

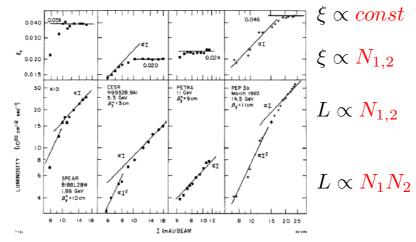
Increasing bunch population N₁ and N₂:

- luminosity should increase N₂
- $L \propto N_1 N_2$
- beam-beam parameter linearly
- $\xi \propto N_{1,2}$

But...

Leptons beam-beam limit

First beam-beam limit (J. Seeman, 1983)



Luminosity and vertical tune shift parameter vs. beam current for SPEAR, CESR, PETRA & PEP.

What is happening?

$$\xi_{x,y} = \frac{Nr_0\beta_{x,y}^*}{2\pi\gamma\sigma_{x,y}(\sigma_x + \sigma_y)}$$

 $L = \frac{N^2 f n_b}{4\pi \sigma_x \sigma_y}$

Lepton colliders $\sigma_x >> \sigma_y$

$$\xi = const$$

 $L = \frac{Nfn_b}{4\pi\sigma_x} \left(\frac{N}{\sigma_y} \right) \quad .$

Above beam-beam limit:

 $\sigma_{\!_{_{\boldsymbol{V}}}}$ increases when N increases to keep ξ constant

Equilibrium emittance

- 1. Synchrotron radiation: vertical plane damped, horizontal plane exited!
- 2. Horizontal beam size normally much larger than vertical (LEP 200 $4\,\mu m$)
- 3. Vertical beam-beam effect depends on horizontal (larger) amplitude

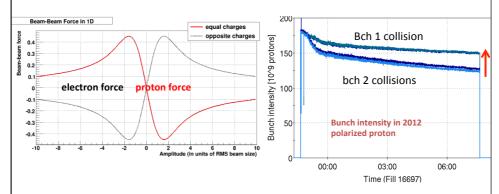
amplitude $\xi_{x,y}=\frac{Nr_0\beta_{x,y}^*}{2\pi\gamma\sigma_{x,y}(\sigma_x+\sigma_y)}$ 4. Coupling from horizontal to vertical plane

Equilibrium between horizontal excitation and vertical damping determines $\xi_{\rm limit}$

Beam-beam compensation: Head-on

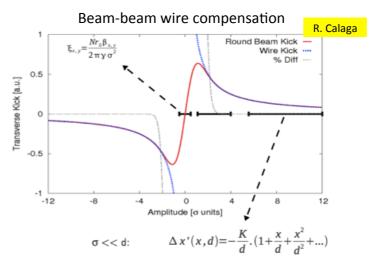
Head-on

- Linear e-lens, suppress shift
- Non-linear e-lens, suppress tune spread



Past experience: at Tevatron linear and non-linear e-lenses, also hollow....
Recently proved and operationally used in RHIC! → 91% peak lumi increase!

Beam-beam compensations: long-range



- Past experiences: at RHIC several tests till 2009...
- Present: prove of principle studies on-going for possible use in HL-LHC...

...not covered here...

- Linear colliders special issues
- Asymmetric beams effects
- Coasting beams
- Beamstrahlung
- Synchrobetatron coupling
- Beam-beam and impedance mode coupling
- ...

References:

- [1] http://cern.ch/Werner.Herr/CAS2009/proceedings/bb_proc.pdf
- [2] V. Shiltsev et al, "Beam beam effects in the Tevatron", Phys. Rev. ST Accel. Beams 8, 101001 (2005)
- [3] Lyn Evans "The beam-beam interaction", CERN 84-15 (1984)
- [4] Alex Chao "Lie Algebra Techniques for Nonlinear Dynamics" SLAC-PUB-9574 (2002)
- [5] J. D. Jackson, "Classical Electrodynamics", John Wiley & Sons, NY, 1962.
- [6] H. Grote, F. Schmidt, L. H. A. Leunissen, "LHC Dynamic Aperture at Collision", LHC-Project-Note 197, (1999).
- [7] W. Herr,"Features and implications of different LHC crossing schemes", LHC-Project-Note 628, (2003).
- [8] A. Hofmann,"Beam-beam modes for two beams with unequal tunes", CERN-SL-99-039 (AP) (1999) p. 56.
- [9] Y. Alexahin, "On the Landau damping and decoherence of transverse dipole oscillations in colliding beams", Part. Acc. 59, 43 (1996).
- [10] R. Assmann et al., "Results of long-range beam-beam studies scaling with beam separation and intensity"

...much more on the LHC Beam-beam webpage:

http://lhc-beam-beam.web.cern.ch/lhc-beam-beam/

