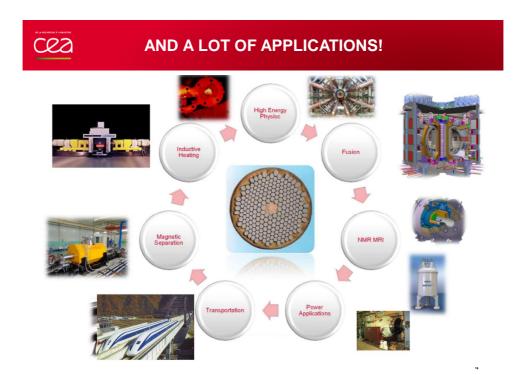


"MAGNET" DEFINITION

From the Collins English Dictionary:


(1) A person that exerts a great attraction



(2) Thing creating a physical field that arises from an electric charge in motion, producing a force on a moving electric charge or on a piece of iron

Sorry, but main subject of my talk...

MAGNET OPTIMISATION IS A COMPLEX PROBLEM...

How physicists depict the CMS detector...

How engineers built it...

5

6

THE FUNDAMENTAL EQUATIONS

A set of only four equations describes the relations between electricity and magnetism:

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$
$$\nabla \cdot \mathbf{B} = 0$$
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

Cea

FIELD MAP SPECIFICATION

A specification can be wide...

- Central field value (usually the highest...)
- Shape (solenoid, toroid, dipole, quadrupole...)
- Magnet aperture (usually the largest...)
- Useful area or volume (usually the largest...)
- Field quality (dipole uniformity, field gradient, field integral, sagita, momentum resolution,...)
- Fringe field (usually very low, even closed to the magnet)
- Operating mode (AC/DC)
- Etc...

cea

ADVANCED TECHNOLOGIES ARE REQUIRED...

7

8

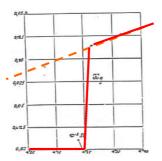
Let's focus on two examples

• LHC dipoles

• High field MRI magnets

Both are based on the SC technology!

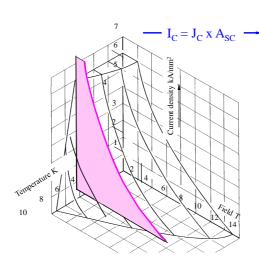
WHY SUPERCONDUCTIVITY ?


62

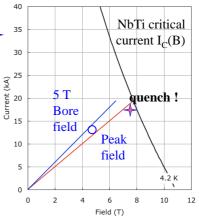
Gilles Holst, student of Kamerlingh Onnes writes a short note to the Royal Academy of the Netherlands on April 8th, 1911 :

... thus the mercury at 4.2 K has entered a new state, which, owing to its particular electrical properties, can be called the state of superconductivity...

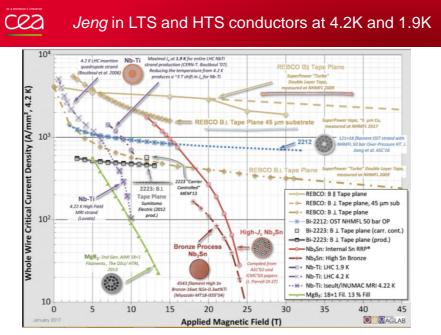
9



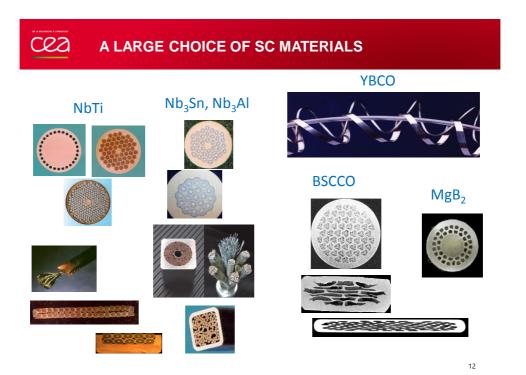
Ohms' law is not longer valid!


- **Low electrical consumption** (mainly to operate the cryogenic system)
- High current density
- **Compact winding** that can generate high magnetic fields in a large volume

CRITICAL LINE AND MAGNET LOAD LINES


NbTi critical surface

e.g. a 5 T magnet design made of NbTi



the magnet becomes resistive (**'quench'**) where the peak field load line crosses the critical current line ₁₀

Cea OPTIMIZATION OF SUPERCONDUCTING COILS

A complex problem:

- Field map specification
- Current transport capacity (choice of conductor)
- · Operating temperature and cooling method
- Peak field on the conductor
- Quench protection
- Mechanical stresses
- Manufacturing techniques
- Economical constraints

C22 MAIN TECHNICAL CHALLENGES OF SC MAGNETS

13

14

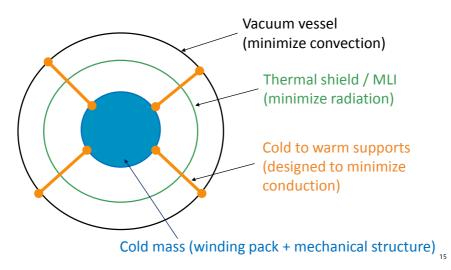
High magnetic field, high current, large useful volume, large stored energy, high mechanical forces and stresses

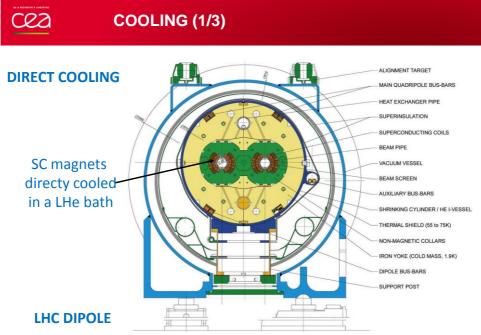
SC state requires low temperatures

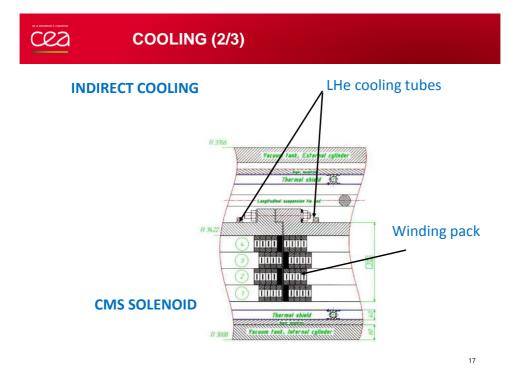
Complex cryogenic system; have to be optimized (compact, autonomous, minimum consumption)

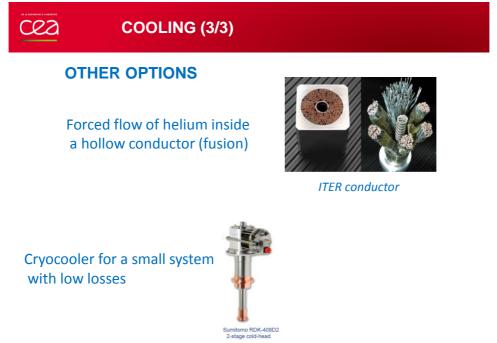
Protection in case of quench

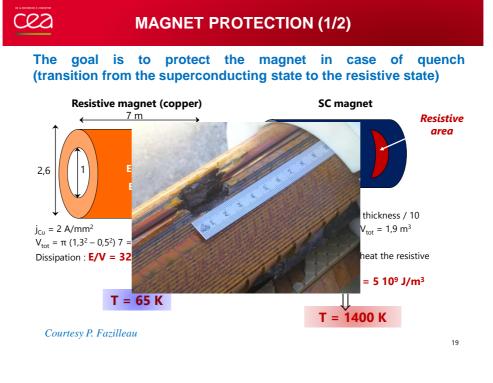
- Where to dissipate the stored energy?
- Manage the quick temperature elevation in the SC system
- Manage the large stresses

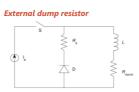

Advanced manufacturing techniques required

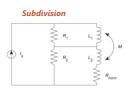

- Superconductors
- Electrical insulation
- Challenging manufacturing techniques



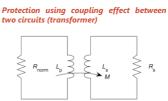

CRYOSTAT GENERAL CONCEPT

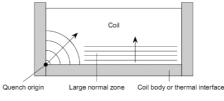

Minimize the thermal losses on the superconducting coil!





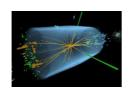
MAGNET PROTECTION (2/2)


- Propagate the quench quickly and into the largest possible volume
- Minimize the hot spot in the winding and thermal gradients (source of mechanical stresses)


Cea

Courtesy P. Fazilleau

Quench-back (Use of Eddy currents created by the magnetic field variation to heat the winding and help the quench propagation »)



THE LHC DIPOLE

21

THE LHC: A UNIQUE FACILITY FOR PARTICULE PHYSICS

7000 km of NbTi

27 km of SC magnets:

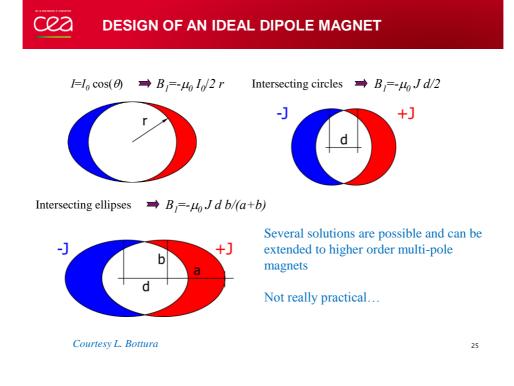

- 1232 dipoles,
- 474 quadrupoles,
- 7612 correction coils

Cooled @ 1,9K with superfluid helium

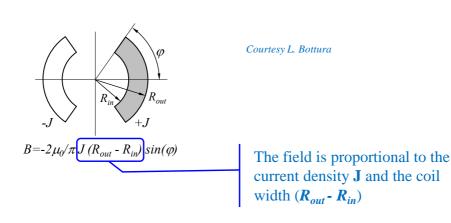
SC MAGNETS VS. RESISTIVE MAGNETS

cea

FROM MAXWELL EQ. TO FIELD HARMONICS

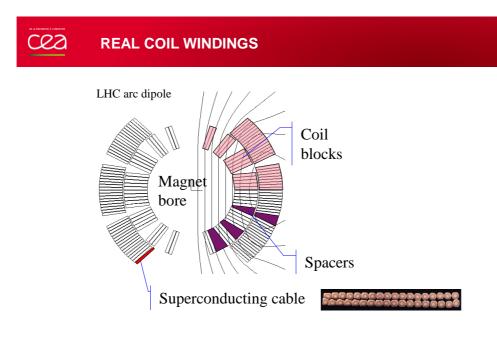

$$\nabla \cdot B = \frac{\partial B_x}{\partial x} + \frac{\partial B_y}{\partial y} + \frac{\partial B_z}{\partial z} = 0 \qquad \nabla \times B = \mu_0 J + \mu_0 \varepsilon_0 \frac{\partial E}{\partial t}$$

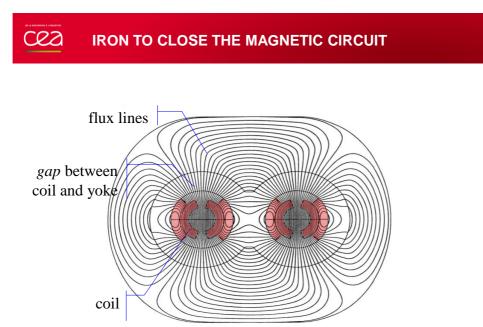
For a constant longitudinal field, in absence of charge and of magnetic material:


$$\frac{\partial B_z}{\partial z} = 0 \qquad \frac{\partial B_x}{\partial x} + \frac{\partial B_y}{\partial y} = 0 \qquad \qquad \frac{\partial B_x}{\partial y} - \frac{\partial B_y}{\partial x} = 0$$

- The magnetic field can be therefore expressed using harmonics
- The coefficients bn, an are called normalized multipoles

$$B_{y} + iB_{x} = 10^{-4} B_{1} \sum_{n=1}^{\infty} (b_{n} + ia_{n}) \left(\frac{x + iy}{R_{ref}}\right)^{n-1}$$

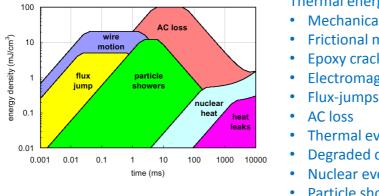




Looks more interesting...

cea

Courtesy L. Bottura



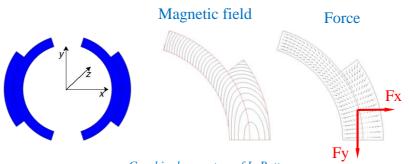
CERN 87-05, G. Brianti and K. Hubner Ed.

28

QUENCH AND THERMAL DISTURBANCES

A quench is generally induced by a local heating

Thermal energy released by

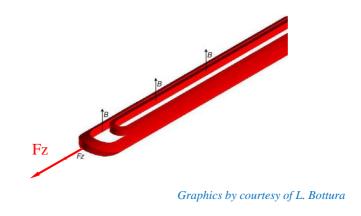

- Mechanical events
- **Frictional motion**
- **Epoxy cracking**
- Electromagnetic events
- Flux-jumps
- **Thermal events**
- **Degraded cooling**
- Nuclear events
- Particle showers

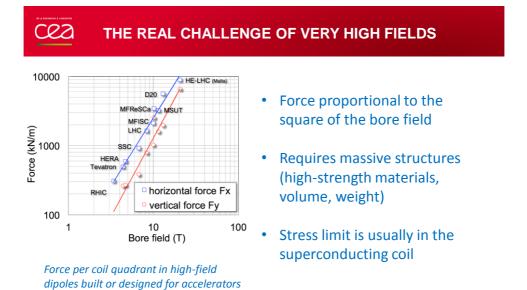
Typical range is from a few to a few tens of mJ/cm³

cea **ELECTROMAGNETIC FORCES - DIPOLE**

The electromagnetic forces in a dipole magnet tend to push the coil:

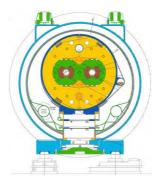
- Vertically, towards the mid plane (Fy < 0)
- Horizontally, outwards (Fx > 0)



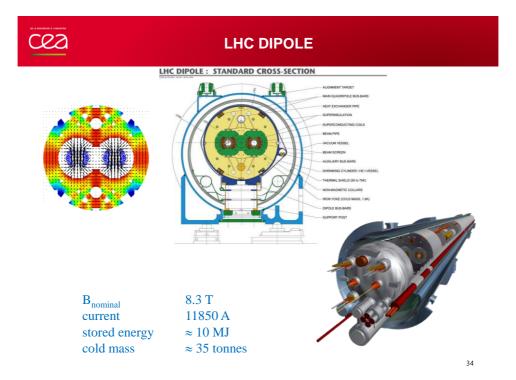

Graphics by courtesy of L. Bottura

In the coil ends the Lorentz forces tend to push the coil:

- Outwards in the longitudinal direction (Fz > 0),
- And, similar to solenoids, the coil straight section is in tension


Design of high field magnets is limited by mechanics!!!

applications and R&D


Cea MECHANICS OF SC MAGNETS – SUPPORT STRUCTURE

The coil is placed inside a strong support structure designed for:

- providing the required pre-stress to the coil after cool-down to reduce conductor displacement
- withstanding the electro-magnetic forces
- providing Lhe containment

LHC DIPOLE

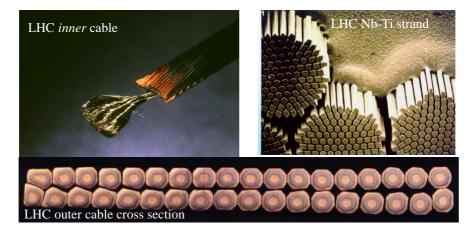
FROM THE WIRE TO THE CABLE

Strand spools on rotating tables

Rutherford cable machine @ CERN

Strands fed through a cabling tongue to shaping rollers

LHC Nb-Ti strand



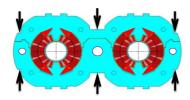
LHC outer cable cross section

35

CC2 RUTHERFORD CABLES

7500 km of superconducting cables

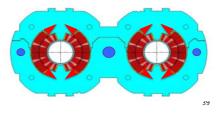
Ends, transitions, and any deviation from the regular structure are the most delicate parts of the magnet


Ce2 COLLARING OPERATION

By clamping the coils, the collars provide

- coil pre-stressing
- rigid support against magnetic forces
- precise cavity

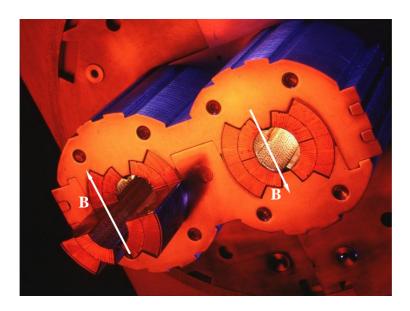
cea



a press, **load the coil** to the desired pre-stress (in the range of 50...100 MPa)

Pre-collared coil assembly under

Insert **keys** to "lock" the collars, **unload** the assembly that is now self-supporting and provides the desired **pre-load** to the coil



COLLARING OF AN LHC DIPOLE

LHC DIPOLE COILS AFTER THE COLLARING

CEO IRON YOKE

As the collars, iron yoke are made in laminations (several mm thick).

Magnetic function: contains and enhances the magnetic field.

Structural function:

- tight contact with the collar
- contributes to increase the rigidity of the coil
- support structure and limit radial displacement.

Holes are included in the yoke design for:

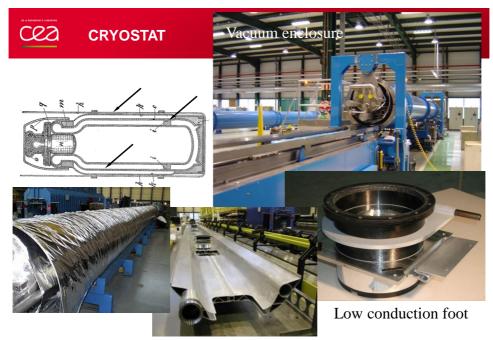
- Correction of saturation effect
- Cooling channel
- Assembly features
- Electrical bus

Cea OUTER SHELL

- The cold mass is contained within a shell
- The shell constitutes a containment structure for LHe.
- Composed by two half shells of stainless steel **welded** around the yoke with high tension (about 150 MPa for the LHC dipole).
- With the iron yoke, it contributes to create a rigid boundary to the collared coil.
- During the welding process, the welding press can impose the desired curvature on the cold mass

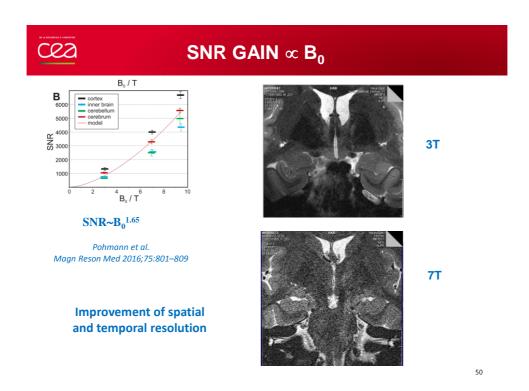
43

44


YOKE WELDING PRESS

C e a

Thermal screens



THE 11,75T ISEULT MRI MAGNET

WB MRI MAGNETS TYPICAL SIZE

Cea

-				
Field	1,5 T	3 T	7 T	11,75 T
		Ð		
	GE-SHFJ/CEA	Siemens	Siemens	Iseult
Length (m)	1,25 - 1,7	1,6 - 1,8	~ 3	4
Diameter (m)	1,9 - 2,1	1,90 - 2,1	> 2,50	4,6
Mass (tons)	~ 5	~ 8	~ 25	~ 135

THE ISEULT 11.7 T MRI PROJECT

- B0 / Aperture 11.75 T / 900 mm
- Field stability 0.05 ppm/h
- Homogeneity < 0.5 ppm on 22 cm DSV
- 170 wetted double pancakes for the main coil
- 2 shielding coils to reduce the fringe field
- NbTi conductor @ 1.8 K

Stored Energy	338 MJ
Inductance	308 H
Current	1483 A
Length	5.2 m
Diameter	5 m
Weight	132 t

Magnet parameters

Neurospin Center CEA Saclay, France

51

cea

MRI MAGNET REQUIREMENTS

Field uniformity and stabilility

- Design Uniformity: 10 parts-per-million (ppm) in ~25 cm diameter volume
 - Multiple-coil configuration
 - Sweet spot
- Field decay:
 - short-term decay: 1 ppb during sequence (EMI, vibration)
 - Long-term decay: less than 0.1 ppm/hour on average, less than 0.1% per year

Shielding

 Magnetic field outside of the scanning suite shall be less than 5 gauss (industry standard)

MAGNETIC FIELD OPTIMIZATION

Inside a sphere with a center O and radius r_{max} « magnetically » empty, the B_z component of the magnetic field can be expressed using a spherical harmonic expansion based on Legendre functions *P*.

$$\Delta B_z = 0$$

$$\frac{B_z(r, \vartheta, \varphi)}{B_0} = 1 + \sum_{n=1}^{\infty} \left(\frac{r}{r_0}\right)^n \begin{bmatrix} H_n P_n(\cos \vartheta) + \\ \sum_{m=1}^n \left(I_n^m \cos m\varphi + J_n^m \sin m\varphi\right) W_n^m P_n^m(\cos \vartheta) \end{bmatrix}$$

$$|W_n^m P_n^m(\cos \vartheta)| \le 1$$

$$H_n, I_n^m, J_n^m \propto \left(\frac{r_0}{a_1}\right)^n$$

Unique set of coefficients $\rightarrow B, A, V^*, \Theta$

Courtesy Pr. Guy Aubert

53

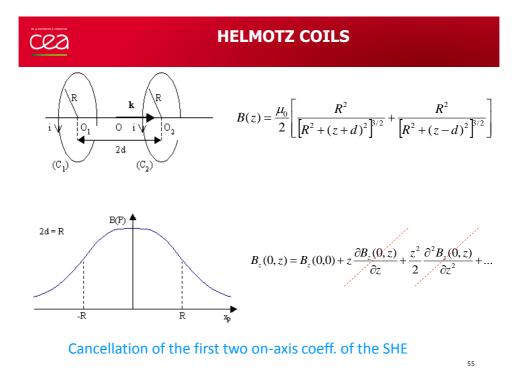
cea

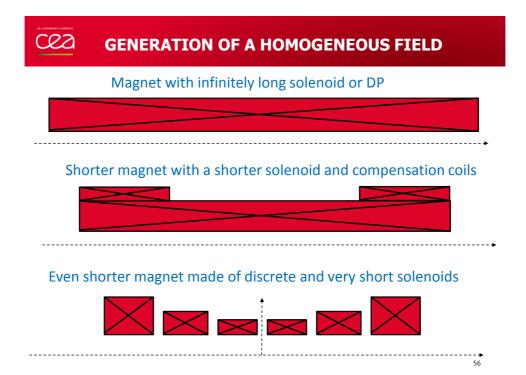
Optimization of the homogeniety: cancel H_n , I_n^m , J_n^m

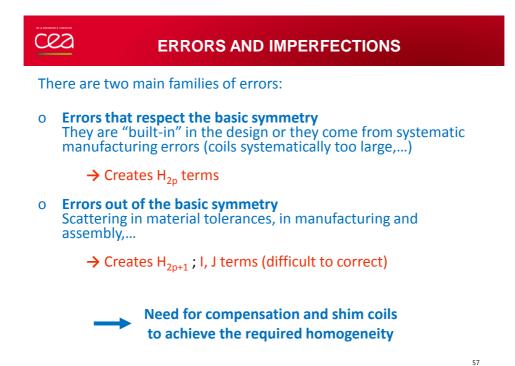
cea

BACK TO THE BASIS

Set of coils of axe Oz, with a rectangular section and an uniform current density. Symmetry with respect to the xOy plan $\rightarrow H_{2o+1}=0$ and I, J=0

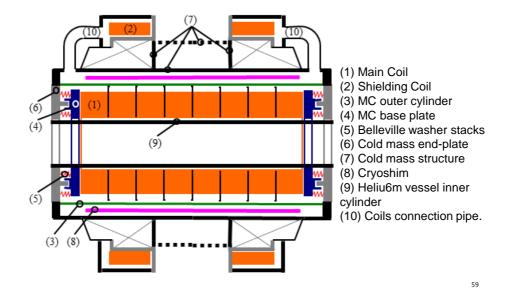

$$\frac{B_z(r, \vartheta, \varphi)}{B_0} = 1 + \sum_{p=1}^{\infty} \left(\frac{r}{r_0}\right)^{2p} H_{2p} P_{2p}(\cos \vartheta)$$

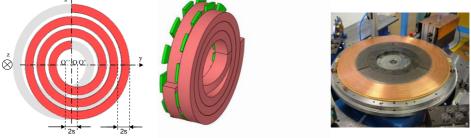

Minimize the coil volume for a given B_0 with $H_2=H_4=...=H_{2p}=0$ \rightarrow the non homogeneity is driven by the term $H_{2(p_0+1)}$


Need at least p₀+1 coils to realize homogenous magnet at the 2(p₀+1) order « shimming theorem»

 \rightarrow Impossibility to cancel H₂ with only one winding of rectangular section

Courtesy Pr. Guy Aubert
$$H_{2} \propto \left[\frac{b(a^{2}+ac+c^{2})}{c^{3}(a+c)}\right]_{a_{1}}^{a_{2}} \qquad a: radius$$
$$c = \sqrt{a^{2}+b^{2}} \qquad b: length$$

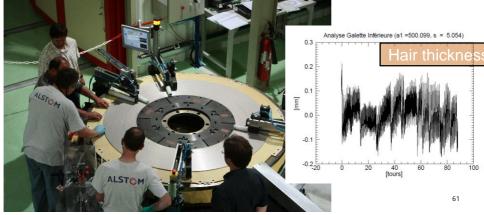



<image><image><image><image><image><image>

CC2 ISEULT HELIUM VESSEL ASSEMBLY PRINCIPLE

C22 INNOVATIVE DESIGN OF DOUBLE PANCAKE

$$B_{z}(r,\theta,\varphi) = B_{0} + \sum_{n=1}^{\infty} r^{n} \left[Z_{n}P_{n}(\cos\theta) + \sum_{m=1}^{n} \left(\underbrace{\bigvee_{m=1}^{m} \cos m\varphi}_{m} \right) W_{n}^{m}P_{n}^{m}(\cos\theta) \right]$$


Magnet is theoretically intrinsically homogeneous

DOUBLE PANCAKE WINDING

170 DG wound and controlled (external diameter of 2 m)

- 330kg each
- Tolerance at inner bore +/-0,05mm
- Control of each +/-0,2mm
- Planarity 0,1mm
- Parallelism à 0,2mm

DOUBLE PANCAKE STACKING AND CURING

Position of each DP checked with laser tracker

Cea SHIELDING COIL MANUFACTURING

Inner radius	1.97 m
Outer radius	2.15 m
Layers number	36
Turns per layer	53
Mass (per coil)	12 tons
Peak field	3,86 T
Conductor length (for one coil)	24700 m
WIC dimensions	9,1 mm x 4,2 mm
lc	2100 A @ 5T @ 1.8 K

SC conductor NbTi WIC

63

Cea

CRYOSTATING

Helium vessel closure

MLI

Cryostat integration

Final leak tests

SHIPPING AND INSTALLATION

Shipping frame

Iseult leaving the manufacturing area

Departure from the factory

Iseult in its arch

Commissioning completion expected in 2018

65

CONCLUSIONS

• Magnets are everywhere, specially SC magnets

• Very important developments in superconductivity technologies over the last 40 years

• SC technologies are a combination of various skills (magnetism, cryogenics, mechanics, electrical engineering, instrumentation, DAQ...)

- Technical challenges to build bigger and stronger magnets:
 - use Nb3Sn and HTS materials
 - increase the operating temperature and simplify the cryogenics
 - reinforce conductor mechanical strength and protect the coils against quenches.

Thank you for your attention

And join our team! Positions are open at CEA Saclay

lionel .quettier@cea.fr

And thanks for contribution of material to Guy Aubert, Luca Bottura, Philippe Fazilleau, Hélène Felice, Paolo Ferracin and Pierre Védrine

Cea FURTHER READINGS

- Y. Iwasa "Case Studies in Superconducting Magnets", ISBN 978-0-387-09799-2
- M. Wilson "Superconducting Magnets", ISBN 978-0-19-854810-2
- L. Dresner "Stability of Superconductors", by, ISBN 0-306-45030-5
- F. Romeo and D.I. Hoult "Magnet Field Profiling: Analysis and Correcting Coil Design", Magnetic Resonance in Medicine 1, 44-65 (1984)
- Sinha et al "Design Concepts of Optimized MRI Magnet", IEEE Trans on Mag, Vol 44, No 10, p 2351-2360 (2008)
- Y. Lvovsky, W. Stautner and T. Wang "Novel technologies and configurations of superconducting magnets for MRI", Superconductor Science and Technology, 26 p. 1-71 (2013)
- Handbook of Applied Superconductivity, Vol. 1 & 2, ISBN-10: 0750303778, ISBN-13: 978-0750303774
- "High Field MR Imaging", Eds. Hennig, Speck, ISBN 978-3-540-85087-8
- "Human brain MRI at 500MHz, scientific perspectives and technological challenges", Denis Le Bihan and Thierry Schild - Supercond. Sci. Technol. 30 (2017) 033003
- High Field Superconducting Magnets: F.M. Asner, Oxford University Press (1999)
- Superconducting Accelerator Magnets: K.H. Mess, P. Schmuser, S. Wolf, World Scientific, (1996
- Handbook of Applied Superconductivity ed. B. Seeber, UK Institute Physics 1998