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Lecture 1 summary

In Lecture 1, we:

• discussed the effects of synchrotron radiation on the

(linear) motion of particles in storage rings;

• derived expressions for the damping times of the vertical,

horizontal, and longitudinal emittances;

• discussed the effects of quantum excitation, and derived

expressions for the equilibrium horizontal and longitudinal

emittances in an electron storage ring in terms of the

lattice functions and beam energy.
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Lecture 2 objectives: emittance and lattice design

In this lecture, we shall:

• derive expressions for the natural (horizontal) emittance in
four types of lattices:

– FODO;

– double-bend achromat (DBA);

– multi-bend achromats (MBA);

– theoretical minimum emittance (TME).

• discuss some aspects of the vertical emittance, including:

– the fundamental lower limit;

– generation of vertical emittance from betatron coupling
and vertical dispersion (from magnet alignment errors);

– accurate calculation of the emittances;

– low-emittance tuning.
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Calculating the natural emittance in a lattice

Our first goal is to calculate the natural emittance in a lattice

with magnets of given strengths, lengths and positions.

In Lecture 1, we showed that the natural emittance in a

storage ring is given by:

ε0 = Cqγ
2 I5
jxI2

, (1)

where Cq is the quantum radiation constant, γ is the relativistic

factor, jx is the horizontal damping partition number, and I2
and I5 are the second and fifth synchrotron radiation integrals.

Note that jx, I2 and I5 are all functions of the lattice, and are

independent of the beam energy.
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Calculating the natural emittance in a lattice

In most storage rings, if the bends have no quadrupole
component, the damping partition number jx ≈ 1.

In this case we just need to evaluate the two synchrotron
radiation integrals:

I2 =
∮ 1

ρ2
ds, I5 =

∮ Hx
|ρ|3

ds. (2)

If we know the strength and length of all the dipoles in the
lattice, it is straightforward to calculate I2.

For example, if all the bends are identical, then in a complete
ring (total bending angle = 2π):

I2 =
∮ 1

ρ2
ds =

∮
B

(Bρ)

ds

ρ
= 2π

B

(Bρ)
≈ 2π

cB

E/e
, (3)

where E is the beam energy.

I5 is more complicated: it depends on the lattice functions...
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Case 1: natural emittance in a FODO lattice
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Case 1: natural emittance in a FODO lattice

Let us consider the case of a FODO lattice. To simplify the
system, we use the following approximations:

• the quadrupoles are represented as thin lenses;

• the space between the quadrupoles is completely filled by
the dipoles.

With these approximations, the lattice functions
(Courant–Snyder parameters and dispersion) are completely
determined by the following parameters:

• the focal length f of a quadrupole;

• the bending radius ρ of a dipole;

• the length L of a dipole.
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Case 1: natural emittance in a FODO lattice

From the evolution of the lattice functions through a given

FODO cell, we can find an (approximate) expression for I5/I2:

the details are given in Appendix A.

For small θ, and if ρ� 2f (which is often the case) we find:

I5
I2
≈
(

1−
L2

16f2

)
8f3

ρ3
. (4)

This result can be further simplified if 4f � L (which is not

always the case):

I5
I2
≈

8f3

ρ3
. (5)
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Case 1: natural emittance in a FODO lattice

Making the approximation jx ≈ 1 (since there is no quadrupole

component in the dipole), and writing ρ = L/θ, we have:

ε0 ≈ Cqγ2
(

2f

L

)3
θ3. (6)

Notice how the emittance scales with the beam and lattice
parameters:

• The emittance is proportional to the square of the energy.

• The emittance is proportional to the cube of the bending angle.
Increasing the number of cells in a complete circular lattice reduces the
bending angle of each dipole, and reduces the emittance.

• The emittance is proportional to the cube of the quadrupole focal
length: stronger quads means lower emittance.

• The emittance is inversely proportional to the cube of the cell (or
dipole) length.
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Case 1: natural emittance in a FODO lattice

The phase advance in a FODO cell is given by:

cos(µx) = 1−
L2

2f2
. (7)

This means that a stable lattice must have:

f

L
≥

1

2
. (8)

In the limiting case, µx = 180◦, and f has the minimum value

f = L/2. Using the approximation (6):

ε0 ≈ Cqγ2
(

2f

L

)3
θ3,

the minimum emittance in a FODO lattice is expected to be:

ε0 ≈ Cqγ2θ3. (9)

However, as we increase the focusing strength, the

approximations we used to obtain the simple expression for ε0

start to break down...
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Case 1: natural emittance in a FODO lattice

Plotting the exact formula for I5/I2 as a function of the phase

advance, we find that there is a minimum in the natural

emittance, at µx ≈ 137◦.

Black line:

exact formula.

Red line:

approximation,

I5
I2
≈
(

1− L2

16f2

)
8f3

ρ3 .

It turns out that the minimum value of the natural emittance in

a FODO lattice is given by:

ε0,FODO,min ≈ 1.2Cqγ
2θ3. (10)
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Case 1: natural emittance in a FODO lattice

Using Eq. (6), we estimate that a storage ring constructed

from 16 FODO cells (32 dipoles) with 90◦ phase advance per

cell (f = L/
√

2), and storing beam at 2 GeV would have a

natural emittance of around 125 nm.

Many modern applications (including synchrotron light sources)

demand emittances smaller by one or two orders of magnitude.

How can we design a lattice with a smaller natural emittance?

Looking at curly-H (Hx) in a FODO cell provides a clue...

Low Emittance Machines 11 Part 2: Emittance and Lattice Design



Case 1: natural emittance in a FODO lattice
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Case 1: natural emittance in a FODO lattice

The curly-H function remains at a relatively constant value

throughout the lattice:
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Case 2: natural emittance in a DBA lattice

As a first attempt at reducing the natural emittance, we can
try reducing the curly-H function in the dipoles, by designing a
lattice that has zero dispersion at either end of a dipole pair.

The result is a double bend achromat (DBA) cell:
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Case 2: natural emittance in a DBA lattice

To calculate the natural emittance in a DBA, let us begin by

considering the conditions for zero dispersion at the start and

the exit of the cell.

Assume that the dispersion is zero at the start of the cell.

Place a quadrupole midway between the dipoles, to reverse the

gradient of the dispersion.

By symmetry, the dispersion at the exit of the cell will be zero.

In the thin lens approximation, this condition can be written:(
1 0
−1/f 1

)(
ηx
ηpx

)
=

(
ηx

ηpx − ηx
f

)
=

(
ηx
−ηpx

)
. (11)
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Case 2: natural emittance in a DBA lattice

Hence the central quadrupole must have focal length:

f =
ηx

2ηpx
. (12)

The actual value of the dispersion (and its gradient) is

determined by the dipole bending angle θ, the bending radius ρ,

and the drift length L:

ηx = ρ(1− cos θ) + L sin θ, ηpx = sin θ. (13)

Is this style of lattice likely to have a lower natural emittance

than a FODO lattice?

We can get some idea by looking at the curly-H function...
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Case 2: natural emittance in a DBA lattice

The curly-H function is much smaller in the DBA lattice (right)

than in the FODO lattice (left).

Note that we use the same dipoles (bending angle and length)

in both cases.
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Case 2: natural emittance in a DBA lattice

Let us calculate the minimum natural emittance of a DBA

lattice, for given bending radius ρ and bending angle θ in the

dipoles.

To do this, we need to calculate the minimum value of:

I5 =
∫ Hx
ρ3

ds (14)

in one dipole, subject to the constraints:

ηx,0 = ηpx,0 = 0, (15)

where ηx,0 and ηpx,0 are the dispersion and gradient of the

dispersion at the entrance of a dipole.
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Case 2: natural emittance in a DBA lattice

We know how the dispersion and the Courant–Snyder

parameters evolve through the dipole, so we can calculate I5
for one dipole, for given initial values of the Courant–Snyder

parameters αx,0 and βx,0.

Then, we simply have to minimise the value of I5 with respect

to αx,0 and βx,0.

Again, the algebra is rather formidable, and the full expression

for I5 is not especially enlightening.

Therefore, we just quote the significant results...
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Case 2: natural emittance in a DBA lattice

We find that, for given ρ and θ and with the constraints:

ηx,0 = ηpx,0 = 0, (16)

the minimum value of I5 is given by:

I5,min =
1

4
√

15

θ4

ρ
+O(θ6). (17)

This minimum occurs for values of the Courant–Snyder

parameters at the entrance to the dipole given by:

βx,0 =

√
12

5
L+O(θ3), αx,0 =

√
15 +O(θ2), (18)

where L = ρθ is the length of a dipole.
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Case 2: natural emittance in a DBA lattice

Since we know that I2 in a single dipole is given by:

I2 =
∫ 1

ρ2
ds =

θ

ρ
, (19)

we can now write down an expression for the minimum

emittance in a DBA lattice:

ε0,DBA,min = Cqγ
2I5,min

jxI2
≈

1

4
√

15
Cqγ

2θ3. (20)

The approximation is valid for small θ. Note that we have again

assumed that, since there is no quadrupole component in the

dipole, jx ≈ 1.

Compare the above expression with that for the minimum

emittance in a FODO lattice (10):

ε0,FODO,min ≈ 1.2Cqγ
2θ3. (21)
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Case 2: natural emittance in a DBA lattice

We see that in both cases (FODO and DBA), the emittance

scales with the square of the beam energy, and with the cube

of the bending angle.

However, the emittance in a DBA lattice is smaller than that in

a FODO lattice (for given energy and dipole bending angle) by

a factor of roughly 4
√

15 ≈ 15.5.

This is a significant improvement... but can we do even better?
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Case 3: natural emittance in a TME lattice

For a DBA lattice, we imposed the constraints:

ηx,0 = ηpx,0 = 0. (22)

To get a lower emittance, we can consider relaxing these

constraints.

To derive the conditions for a “theoretical minimum

emittance” (TME) lattice, we write down an expression for:

I5 =
∫ Hx

ρ
ds, (23)

with arbitrary dispersion ηx,0, ηpx,0 and Courant–Snyder

parameters αx,0 and βx,0 in a dipole with given bending radius ρ

and angle θ.

Then, we minimise I5 with respect to ηx,0, ηpx,0, αx,0 and βx,0...
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Case 3: natural emittance in a TME lattice

The result is:

ε0,TME,min ≈
1

12
√

15
Cqγ

2θ3. (24)

The minimum emittance is obtained with dispersion at the
entrance to the dipole given by:

ηx,0 =
1

6
Lθ +O(θ3), ηpx,0 = −

θ

2
+O(θ3), (25)

and with Courant–Snyder functions at the entrance:

βx,0 =
8√
15
L+O(θ2), αx,0 =

√
15 +O(θ2). (26)

The dispersion and beta function reach minimum values in the
centre of the dipole:

ηx,min = ρ

1− 2
sin θ

2

θ

 =
Lθ

24
+O(θ4), βx,min =

L

2
√

15
+O(θ2).

(27)

Low Emittance Machines 24 Part 2: Emittance and Lattice Design

Case 3: natural emittance in a TME lattice

By symmetry, we can consider a single TME cell to contain a

single dipole, rather than a pair of dipoles as was necessary for

the FODO and DBA cells.

Outside the dipole, the

dispersion is relatively

large. This is not ideal

for a light source, since

insertion devices at

locations with large

dispersion will blow up

the emittance.

Note that the cell shown here does not achieve the exact conditions for a

TME lattice: a more complicated design would be needed for this.
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Summary: natural emittance in FODO, DBA and TME lattices

Lattice style Minimum emittance Conditions/comments

90◦ FODO ε0 ≈ 2
√

2Cqγ2θ3 f
L = 1√

2

137◦ FODO ε0 ≈ 1.2Cqγ2θ3 minimum emittance FODO

DBA ε0 ≈ 1
4
√

15
Cqγ2θ3

ηx,0 = ηpx,0 = 0

βx,0 ≈
√

12/5L αx,0 ≈
√

15

TME ε0 ≈ 1
12
√

15
Cqγ2θ3 ηx,min ≈ Lθ

24 βx,min ≈ L
2
√

15
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Comments on lattice design for low emittance

The results we have derived have been for “ideal” lattices that

perfectly achieve the stated conditions in each case.

Practical lattice designs rarely achieve the ideal conditions. In

particular, the beta function in an achromat is usually not

optimal for low emittance; and it is difficult to tune the

dispersion for the ideal TME conditions.

The main reasons for this are:

• Beam dynamics issues generally impose a number of strong

constraints on the design.

• Optimizing the lattice functions while meeting all the

various constraints can require complex configurations of

quadrupoles.
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Comments on lattice design for low emittance

A particularly challenging constraint on design of a

low-emittance lattice is the dynamic aperture.

Storage rings require a large dynamic aperture in order to

achieve good injection efficiency and good beam lifetime.

However, low emittance lattices generally need low dispersion

and beta functions, and hence require strong quadrupoles. As a

result, the chromaticity can be large, and must be corrected by

strong sextupoles.

Strong sextupoles lead to strongly nonlinear motion, and limit

the dynamic aperture (the trajectories of particles at large

betatron amplitudes or large energy deviations become

unstable).
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Further options and issues

There are many other options besides FODO, DBA and TME

for the style of the lattice.

Here, we will discuss (briefly):

• the use of the DBA lattice in third-generation synchrotron

light sources;

• “detuning” a DBA lattice to reduce the emittance;

• the use of multi-bend achromats.
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Further options and issues

Lattices composed of DBA cells have been a popular choice for

third generation synchrotron light sources, e.g. the ESRF.

The DBA structure provides a lower natural emittance than a

FODO lattice with the same number of dipoles.

The long, dispersion-free straight sections provide ideal

locations for insertion devices such as undulators and wigglers.
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“Detuning” a DBA

If an insertion device, such as an undulator or wiggler, is placed
in a storage ring at a location with large dispersion, then the
dipole fields in the device can make a significant contribution
to the quantum excitation (I5).

As a result, the insertion device can lead to an increase in the
natural emittance of the storage ring.

By using a DBA lattice, we provide dispersion-free straights in
which we can locate undulators and wigglers without blowing
up the natural emittance.

However, there is some tolerance. In many cases, it is possible
to “detune” the lattice from the strict DBA conditions, thereby
allowing some reduction in natural emittance at the cost of
some dispersion in the straights.

The insertion devices will then contribute to the quantum
excitation; but depending on the lattice and the insertion
devices, there may still be a net benefit.
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“Detuning” a DBA

Some light sources that were originally designed with
zero-dispersion straights take advantage of tuning flexibility to
operate with non-zero dispersion in the straights.

This provides a lower natural emittance, and better output for
users. For example, the ESRF:
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Multiple-bend achromats

In principle, it is possible to combine the DBA and TME lattices

by having an arc cell consisting of more than two dipoles.

The dipoles at either end of the cell have zero dispersion (and

gradient of the dispersion) at their outside faces, thus

satisfying the achromat condition.

The lattice is tuned so that in the “central” dipoles, the

Courant–Snyder parameters and dispersion satisfy the TME

conditions.
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Multiple-bend achromats

Suppose that the dipoles all have the same bending radius

(i.e. the same field strength), but can have different lengths.

In this case, we find (see Appendix B) that the minimum

natural emittance in an M-bend achromat is given by:

ε0 ≈ Cqγ2 1

12
√

15

(
M + 1

M − 1

)
θ3, 2 < M <∞, (28)

where θ is the average bending angle per dipole.

The minimum emittance is achieved when the central bends

are longer than the outer bends by a factor 3√3.
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Example of a triple-bend achromat: the Swiss Light Source

The Swiss Light Source storage ring consists of 12 TBA cells.

The circumference is 288 m, and the beam energy is 2.4 GeV.

In the “zero-dispersion” mode, the natural emittance is

4.8 nm-rad.
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Example of a triple-bend achromat: the Swiss Light Source

Detuning the achromat to allow dispersion in the straights

reduces the natural emittance by about 20% (to 3.9 nm-rad).
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A 7-bend achromat: MAX IV

Note: vertical focusing provided by gradient in the bending magnets.

S.C. Leeman et al, “Beam dynamics and expected performance of Sweden’s

new storage-ring light source: MAX IV,” PRST-AB 12, 120701 (2009).
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A 7-bend achromat: MAX IV

Beam energy 3 GeV

Circumference 528 m

Number of cells 20

Horizontal emittance (no IDs) 0.326 nm

Horizontal emittance (with IDs) 0.263 nm
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Variational (longitudinal gradient) bends

In principle, we can relax the constraint that the field strength

in a dipole is constant along the length of the dipole.

Allowing a longitudinal variation in the strength provides

another degree of freedom in reducing the emittance. We

expect an optimised design to have the strongest field at the

centre of the dipole, where the dispersion can be minimised.

J. Guo and T. Raubenheimer, Proceedings of EPAC’02, Paris, France.
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Vertical emittance

Recall that the natural (horizontal) emittance in a storage ring

is given by:

ε0 = Cqγ
2 I5
jxI2

. (29)

If the vertical motion is independent of the horizontal motion

(i.e. if there is no betatron coupling) then we can apply the

same analysis to the vertical motion as we did to the horizontal.

Then, if we build a ring that is completely flat (i.e. no vertical

bending), then there is no vertical dispersion:

ηy = ηpy = 0 ∴ Hy = 0 ∴ I5y = 0. (30)

This implies that the vertical emittance will damp to zero.
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Fundamental lower limit on the vertical emittance

However, in deriving equation (29) for the natural emittance,
we assumed that all photons were emitted directly along the
instantaneous direction of motion of the electron.

In fact, photons are emitted with a distribution with angular
width 1/γ about the direction of motion of the electron.

This leads to some vertical “recoil” that excited vertical
betatron motion, resulting in a non-zero vertical emittance.

A detailed analysis∗ leads to the following formula for the
fundamental lower limit on the vertical emittance:

εy,min =
13

55

Cq

jyI2

∮
βy

|ρ|3
ds. (31)

∗T. Raubenheimer, SLAC Report 387 (1992)
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Fundamental lower limit on the vertical emittance

To estimate a typical value for the lower limit on the vertical

emittance, let us write equation (31) in the approximate form:

εy,min ≈
Cq〈βy〉
4jyI2

∮ 1

|ρ|3
ds =

〈βy〉
4

jz

jy

σ2
δ

γ2
. (32)

Using some typical values (〈βy〉 = 20 m, jz = 2, jy = 1,

σδ = 10−3, γ = 6000), we find:

εy,min ≈ 0.3 pm. (33)

The lowest vertical emittance achieved so far in a storage ring

is around a picometer, several times larger than the

fundamental lower limit.
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Practical limits on the vertical emittance

In practice, vertical emittance in a (nominally flat) storage ring

is dominated by two effects:

• residual vertical dispersion, which couples longitudinal and

vertical motion;

• betatron coupling, which couples horizontal and vertical

motion.

The dominant causes of residual vertical dispersion and

betatron coupling are magnet alignment errors, in particular:

• tilts of the dipoles around the beam axis;

• vertical alignment errors on the quadrupoles;

• tilts of the quadrupoles around the beam axis;

• vertical alignment errors of the sextupoles.
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Betatron coupling

Betatron coupling describes the dependence of the vertical

motion of a particle on its horizontal motion (and vice-versa).

In a storage ring, betatron coupling

often comes from skew quadrupole

fields generated by rotation (tilt)

errors on quadrupoles and vertical

alignment errors on sextupoles.

A rigorous treatment of coupling can be complex; but it is

possible to use simplified models to derive approximate

expressions for the equilibrium emittances in the presence of

coupling.
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Betatron coupling

One possible approach is as follows:

1. Write down the equations of motion for a single particle in

a beamline containing coupling.

2. Look for a “steady state” solution to the equations of

motion, in which the horizontal and vertical actions are

each constants of the motion.

3. Assume that the actions in the steady state solution are the

equilibrium emittances (since ε = 〈J〉), and that the sum of

the horizontal and vertical emittances equals the natural

emittance of the “ideal” lattice (i.e. the natural emittance

of the lattice in the absence of errors).

This procedure can give some useful results, but because of the

approximations involved, the formulae are not always very

accurate.
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Betatron coupling

The details of the calculation are given in Appendix C. Here,

we simply quote the results.

The horizontal and vertical emittances in the presence of

coupling generated by skew quadrupoles in a lattice are:

εx,y =
ε0

2

1±
1√

1 + κ2/∆ν2

 , (34)

where the upper (lower) sign applies for the horizontal

(vertical) emittance, ε0 is the natural emittance, and ∆ν is the

difference in the fractional parts of the betatron tunes.

The “coupling strength” κ is found from:

κeiχ =
1

2π

∮
ei(µx−µy)ks

√
βxβy ds. (35)
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Betatron coupling: example

As an illustration, we can plot the vertical emittance as a function of the
“tune split” ∆ν, in a model of the ILC damping rings, with a single skew
quadrupole (located at a point of zero dispersion – why?).

The tunes are controlled by adjusting the regular (normal) quadrupoles in

the lattice:

Note: the “simulation” results are based on emittance calculation using

Chao’s method, which we shall discuss later.
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Betatron coupling: effect on betatron tunes

The presence of skew quadrupole errors in a storage ring
affects the betatron tunes. In Appendix D, it is shown that the
measured betatron tunes ν± are given (in terms of the tunes νx
and νy in the absence of errors) by:

ν± =
1

2

(
νx + νy ±

√
κ2 + ∆ν2

)
. (36)

This provides a useful method for measuring the coupling
strength κ in a real lattice:
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Vertical dispersion and vertical emittance

Vertical emittance can also be generated by vertical dispersion,

in the same way that horizontal emittance can be generated by

horizontal dispersion.

If we know the vertical dispersion all around the ring, then to

calculate the vertical emittance we can simply modify the

formula for the natural emittance (see Lecture 1):

εy = Cqγ
2 I5y

jyI2
, (37)

where jy is the vertical damping partition number (usually,

jy = 1), and the synchrotron radiation integrals are given by:

I2 =
∮ 1

ρ2
ds, (38)

and:

I5y =
∮ Hy
|ρ|3

ds, where Hy = γyη
2
y + 2αyηyηpy + βyη

2
py.

(39)
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Vertical dispersion and vertical emittance

If the vertical dispersion is generated randomly, then we can
assume that it will not be correlated with the curvature 1/ρ of
the reference trajectory†.

Then, we can write:

I5y ≈ 〈Hy〉
∮ 1

|ρ|3
ds = 〈Hy〉I3. (40)

Hence, we can write for the vertical emittance:

εy ≈ Cqγ2〈Hy〉
I3
jyI2

. (41)

It is convenient to use:

σ2
δ = Cqγ

2 I3
jzI2

, (42)

which gives:

εy ≈
jz

jy
〈Hy〉σ2

δ . (43)

†This is not the case for the horizontal dispersion!
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Vertical dispersion and vertical emittance

Now, note the similarity between the action:

2Jy = γyy
2 + 2αyypy + βyp

2
y , (44)

and the curly-H function:

Hy = γyη
2
y + 2αyηyηpy + βyη

2
py. (45)

This implies that we can write:

ηy =
√
βyHy cosφηy, ∴

〈
η2
y

βy

〉
=

1

2
〈Hy〉. (46)

Combining equations (43) and (46) gives a useful

(approximate) relationship, between the vertical dispersion and

the vertical emittance:

εy ≈ 2
jz

jy

〈
η2
y

βy

〉
σ2
δ . (47)
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Accurate methods of emittance computation

The formulae we have derived so far are useful for making
rough estimates of the sensitivity to particular types of error.

For detailed studies, including modelling and simulations, we
need more accurate formulae for computing the vertical
emittance in a storage ring with a given set of alignment errors.

Methods for computing the equilibrium emittances in complex
lattices (including lattices with errors), include:

• radiation integrals generalised to the normal modes;

• Chao’s method: A. Chao, “Evaluation of beam distribution
parameters in an electron storage ring,” J. Appl. Phys. 50,
595-598 (1979);

• the ‘envelope’ method (Appendix E): K. Ohmi, K. Hirata,
K. Oide, “From the beam-envelope matrix to the
synchrotron radiation integrals,” Phys. Rev. E 49, 751-765
(1994).
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Ultra-low emittance tuning

In practice, tuning a storage ring to achieve a vertical emittance

of no more than a few picometres is a considerable challenge.

This cannot be done just by survey alignment of the magnets:

beam-based methods are also required. However, precise

alignment of the magnets is always the first step.

A variety of beam-based methods for tuning storage rings have

been developed over the years.

A typical procedure might look as follows...
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Ultra-low emittance tuning

Step 1: Align the magnets by a survey of the ring.

Typically, quadrupoles need to be aligned to better than a few

tens of microns, and sextupoles to better than a couple of

hundred microns.
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Ultra-low emittance tuning

Step 2: Determine the positions of the BPMs relative to the

quadrupoles.

This is known as “beam-based alignment” (BBA): the beam is

steered to a position in each quadrupole such that changing

the quadrupole strength has no effect on the orbit.
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Ultra-low emittance tuning

Step 3: Correct the orbit (using steering magnets) so that it is

as close as possible to the centres of the quadrupoles.

Step 4: Correct the vertical dispersion (using steering magnets

and/or skew quadrupoles, and measuring at the BPMs) as

close to zero as possible.

Step 5: Correct the coupling, by adjusting skew quadrupoles so

that an orbit “kick” in one place (from any orbit corrector) has

no effect on the orbit in the other plane.

Usually, these last three steps need to be iterated several (or

even many) times.
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Ultra-low emittance tuning: ORM analysis

Results from the tuning procedure described above can be

limited by errors on the BPMs, which can affect dispersion and

coupling measurements.

A useful technique for overcoming such limitations is to apply

Orbit Response Matrix (ORM) analysis. This can be used to

determine a wide range of magnet and diagnostics parameters,

including coupling errors and BPM tilts.

ORM analysis in
KEK ATF.

Left: measured
orbit response
matrix.

Right: residuals
between measured
ORM and machine
model.
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Summary (1)

The natural emittance in a storage ring is determined by the

balance between the radiation damping (given by I2) and the

quantum excitation (given by I5).

The quantum excitation depends on the lattice functions.

Different “styles” of lattice can be used, depending on the

emittance specification for the storage ring.

In general, for small bending angle θ the natural emittance can

be written as:

ε0 ≈ FCqγ2θ3, (48)

where θ is the bending angle of a single dipole, and the

numerical factor F is determined by the lattice style...
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Summary (2)

ε0 ≈ FCqγ2θ3

Lattice style F

90◦ FODO 2
√

2

137◦ FODO 1.2

Double-bend achromat (DBA) 1
4
√

15

Multi-bend achromat 1
12
√

15

(
M+1
M−1

)
TME 1

12
√

15
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Summary (3)

Achromats have been popular choices for storage ring lattices

in third-generation synchrotron light sources for two reasons:

• they provide lower natural emittance than FODO lattices;

• they provide zero-dispersion locations appropriate for

insertion devices (wigglers and undulators).

Light sources have been built using double-bend achromats

(e.g. ESRF, APS, SPring-8, DIAMOND, SOLEIL) and

triple-bend achromats (e.g. ALS, SLS).

Increasing the number of bends in an achromat cell

(“multiple-bend achromats”) and “detuning” an achromat (to

allow some dispersion in the straights) can help to achieve a

lower emittance.
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Summary (4)

The opening angle of the synchrotron radiation places a lower

limit (typically, a fraction of a picometre) on the vertical

emittance.

In practice, the vertical emittance is dominated by alignment

and tuning errors (betatron coupling and vertical dispersion).

Natural emittances of a few nanometres are typical in storage

rings for third generation light sources.

Storage rings for light sources often operate with vertical

emittances of order 1% (or less) of the horizontal (natural)

emittance: this requires careful tuning and correction of

alignment errors.
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Appendix A: Evaluating I5 in a FODO lattice

In terms of f , ρ and L, the horizontal beta function at the
horizontally-focusing quadrupole is given by:

βx =
4fρ sin θ(2f cos θ + ρ sin θ)√

16f4 − [ρ2 − (4f2 + ρ2) cos 2θ]2
, (49)

where θ = L/ρ is the bending angle of a single dipole.

The dispersion at a horizontally-focusing quadrupole is given by:

ηx =
2fρ(2f + ρ tan θ

2
)

4f2 + ρ2
. (50)

By symmetry, at the centre of a quadrupole, αx = ηpx = 0.
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Appendix A: Evaluating I5 in a FODO lattice

We also know how to evolve the lattice functions through the lattice, using
the transfer matrices, M .

For the Courant–Snyder parameters:

A(s1) = MA(s0)MT, (51)

where M = M(s1; s0) is the transfer matrix from s0 to s1, and:

A =

(
βx −αx
−αx γx

)
. (52)

The dispersion can be evolved (over a distance ∆s, with constant bending
radius ρ) using: (

ηx
ηpx

)
s1

= M

(
ηx
ηpx

)
s0

+

(
ρ(1− cos ∆s

ρ
)

sin ∆s
ρ

)
. (53)
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Appendix A: Evaluating I5 in a FODO lattice

For a thin quadrupole, the transfer matrix is: M =

(
1 0
−1/f 1

)
.

For a dipole, the transfer matrix is: M =

(
cos s

ρ
ρ sin s

ρ

−1
ρ

sin s
ρ

cos s
ρ

)
.

We now have all the information we need to find an expression for I5 in the
FODO cell.

However, the algebra is rather formidable. The result is most easily
expressed as a power series in the dipole bending angle, θ:

I5

I2
=

(
4 +

ρ2

f2

)−3

2
[
8−

ρ2

2f2
θ2 +O(θ4)

]
. (54)
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Appendix A: Evaluating I5 in a FODO lattice

For small θ, the expression for I5/I2 can be written:

I5

I2
≈
(

1−
ρ2

16f2
θ2

)(
1 +

ρ2

4f2

)−3

2

=

(
1−

L2

16f2

)(
1 +

ρ2

4f2

)−3

2

. (55)

This can be further simplified if ρ� 2f (often the case):

I5

I2
≈
(

1−
L2

16f2

)
8f3

ρ3
, (56)

and still further simplified if 4f � L (less often the case):

I5

I2
≈

8f3

ρ3
. (57)
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Appendix B: Multiple-bend achromats

For simplicity, we consider the case where the dipoles all have the same
bending radius (i.e. they all have the same field strength), but they vary in
length.

Assuming that each arc cell has a fixed number, M , of dipoles, and
θ = 2π/MNcells, the bending angles satisfy:

2α+ (M − 2)β = M. (58)

Since the synchrotron radiation integrals are additive, for an M-bend
achromat, we can write:

I5,cell ≈
2

4
√

15

(αθ)4

ρ
+

(M − 2)

12
√

15

(βθ)4

ρ
=

6α4 + (M − 2)β4

12
√

15

θ4

ρ
,

(59)

I2,cell ≈ 2
αθ

ρ
+ (M − 2)

βθ

ρ
= [2α+ (M − 2)β]

θ

ρ
. (60)
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Appendix B: Multiple-bend achromats

Hence, in an M-bend achromat:

I5,cell

I2,cell
≈

1

12
√

15

[
6α4 + (M − 2)β4

2α+ (M − 2)β

]
θ3. (61)

Minimising the ratio I5/I2 with respect to α gives:

α

β
=

1
3
√

3
,

6α4 + (M − 2)β4

2α+ (M − 2)β
≈
M + 1

M − 1
. (62)

The central bending magnets should be longer than the outer bending
magnets by a factor 3

√
3.

Then, the minimum natural emittance in an M-bend achromat is given by:

ε0 ≈ Cqγ2 1

12
√

15

(
M + 1

M − 1

)
θ3, 2 < M <∞. (63)

Note that θ is the average bending angle per dipole.
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Appendix C: Equations of motion in a coupled storage ring

Our goal is to find the equations of motion for a particle in a coupled
storage ring, and by solving these equations, to show equation (34).

We will use Hamiltonian mechanics. In this formalism, the equations of
motion for the action-angle variables (with path length s as the independent
variable) are derived from the Hamiltonian:

H = H(φx, Jx, φy, Jy; s), (64)

using Hamilton’s equations:

dJx

ds
= −

∂H

∂φx
,

dJy

ds
= −

∂H

∂φy
, (65)

dφx

ds
=
∂H

∂Jx
,

dφy

ds
=
∂H

∂Jy
. (66)

For a particle moving along a linear, uncoupled beamline, the Hamiltonian is:

H =
Jx

βx
+
Jy

βy
. (67)
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Appendix C: Equations of motion in a coupled storage ring

The first step is to derive an appropriate form for the Hamiltonian in a
storage ring with skew quadrupole perturbations.

In Cartesian variables, the equations of motion
in a skew quadrupole can be written:

dpx

ds
= ksy,

dpy

ds
= ksx, (68)

dx

ds
= px,

dy

ds
= py, (69)

where:

ks =
1

Bρ

∂Bx

∂x
. (70)

These equations can be derived from the Hamiltonian:

H =
1

2
p2
x +

1

2
p2
y − ksxy. (71)

Low Emittance Machines 69 Part 2: Emittance and Lattice Design



Appendix C: Equations of motion in a coupled storage ring

We are interested in the case where there are skew quadrupoles distributed
around a storage ring.

The “focusing” effect of a skew quadrupole is represented by a term in the
Hamiltonian:

ksxy = 2ks
√
βxβy

√
JxJy cosφx cosφy. (72)

This implies that the Hamiltonian for a beam line with distributed skew
quadrupoles can be written:

H =
Jx

βx
+
Jy

βy
− 2ks(s)

√
βxβy

√
JxJy cosφx cosφy. (73)

The beta functions and the skew quadrupole strength are functions of the
position s. This makes it difficult to solve the equations of motion exactly.

Therefore, we simplify the problem by “averaging” the Hamiltonian:

H = ωxJx + ωyJy − 2κ̄
√
JxJy cosφx cosφy. (74)

Here, ωx, ωy and κ̄ are constants.
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Appendix C: Equations of motion in a coupled storage ring

ωx and ωy are the betatron frequencies, given by:

ωx,y =
1

C

∫ C

0

ds

βx,y
. (75)

For reasons that will become clear shortly, we re-write the coupling term, to
put the Hamiltonian in the form:

H = ωxJx + ωyJy − κ̄−
√
JxJy cos(φx − φy)− κ̄+

√
JxJy cos(φx + φy). (76)

The constants κ̄± represent the skew quadrupole strength averaged around
the ring. However, we need to take into account that the kick from a skew
quadrupole depends on the betatron phase. Thus, we write:

κ̄±e
iχ =

1

C

∫ C

0
ei(µx±µy)ks

√
βxβy ds, (77)

where µx and µy are the betatron phase advances from the start of the ring.
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Appendix C: Equations of motion in a coupled storage ring

Now suppose that κ̄− � κ̄+. (This can occur, for example, if ωx ≈ ωy, in
which case all the skew quadrupole perturbations will add together in
phase.) Then, we can simplify things further by dropping the term in κ̄+

from the Hamiltonian:

H = ωxJx + ωyJy − κ̄−
√
JxJy cos(φx − φy). (78)

We can now write down the equations of motion:

dJx

ds
= −

∂H

∂φx
= κ̄−

√
JxJy sin(φx − φy), (79)

dJy

ds
= −

∂H

∂φy
= −κ̄−

√
JxJy sin(φx − φy), (80)

dφx

ds
=

∂H

∂Jx
= ωx +

κ̄−

2

√
Jx

Jy
cos(φx − φy), (81)

dφy

ds
=

∂H

∂Jy
= ωy +

κ̄−

2

√
Jy

Jx
cos(φx − φy). (82)
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Appendix C: Equations of motion in a coupled storage ring

Even after all the simplifications we have made, the equations of motion are
still rather difficult to solve. Fortunately, however, we do not require the
general solution. In fact, we are only interested in the properties of some
special cases.

First of all, we note that the sum of the actions is constant:

dJx

ds
+
dJy

ds
= 0 ∴ Jx + Jy = constant. (83)

This is true in all cases.

Going further, we notice that if φx = φy, then the rate of change of each
action falls to zero, i.e.:

if φx = φy then
dJx

ds
=
dJy

ds
= 0. (84)

This implies that if we can find a solution to the equations of motion with
φx = φy for all s, then the actions will remain constant.
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Appendix C: Equations of motion in a coupled storage ring

From the equations of motion, we find that if:

φx = φy and
dφx

ds
=
dφy

ds
, (85)

then:

Jy

Jx
=

√
1 + κ̄2

−/∆ω2 − 1√
1 + κ̄2

−/∆ω2 + 1
, (86)

where ∆ω = ωx − ωy.

If we further use Jx + Jy = J0, where J0 is a constant, then we have the
fixed point solution:

Jx =
1

2

1 +
1√

1 + κ̄2
−/∆ω2

 J0, (87)

Jy =
1

2

1−
1√

1 + κ̄2
−/∆ω2

 J0. (88)
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Appendix C: Equations of motion in a coupled storage ring

Note the behaviour of the fixed-point actions as we vary the “coupling
strength” κ̄− and the betatron tunes (betatron frequencies).

The fixed-point actions are well-separated for κ̄− �∆ω, but approach each
other for κ̄− �∆ω.

The condition at which the tunes are equal (or differ by an exact integer) is
known as the difference coupling resonance.
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Appendix C: Equations of motion in a coupled storage ring

Recall that the emittance may be defined as the betatron action averaged
over all particles in the beam:

εx = 〈Jx〉, and εy = 〈Jy〉. (89)

Now, synchrotron radiation will damp the beam towards an equilibrium
distribution. In this equilibrium, we expect the betatron actions of the
particles to change only slowly, i.e. on the timescale of the radiation
damping, whis is much longer than the timescale of the betatron motion.

In that case, the actions of most particles must be in the correct ratio for a
fixed-point solution to the equations of motion. Then, if we assume that
εx + εy = ε0, where ε0 is the natural emittance of the storage ring, we must
have for the equilibrium emittances:

εx =
1

2

1 +
1√

1 + κ̄2
−/∆ω2

 ε0, (90)

εy =
1

2

1−
1√

1 + κ̄2
−/∆ω2

 ε0. (91)

Hence, we have shown equation (34).
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Appendix D: Tune shifts from skew quadrupole perturbations

To estimate the effect of a skew quadrupole perturbation on the betatron
tunes, we use the Hamiltonian (78). If we consider a particle close to the
fixed point solution, we can assume that φx = φy, so that the Hamiltonian
becomes:

H = ωxJx + ωyJy − κ̄−
√
JxJy. (92)

The normal modes describe motion that is periodic with a single
well-defined frequency. In the absence of coupling, the transverse normal
modes correspond to motion in just the horizontal or vertical plane. When
coupling is present, the normal modes involve combination of horizontal and
vertical motion.

Let us write the Hamiltonian (92) in the form:

H =
( √

Jx
√
Jy
)
A

( √
Jx√
Jy

)
, where A =

(
ωx −1

2
κ̄−

−1
2
κ̄− ωy

)
. (93)

The normal modes can be constructed from the eigenvectors of the matrix
A, and the frequency of each mode is given by the corresponding eigenvalue.

From the eigenvalues of A, we find that the normal mode frequencies are:

ω± =
1

2

(
ωx + ωy ±

√
κ̄2
− + ∆ω2

)
. (94)
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Appendix E: The envelope method for computing emittances

The envelope method for computing the beam emittances is based on
finding the equilibrium distribution described by the “Sigma matrix” (the
matrix of second order moments of the dynamical variables):

Σ =


〈x2〉 〈xpx〉 〈xy〉 〈xpy〉 〈xz〉 〈xδ〉
〈pxx〉 〈p2

x〉 〈pxy〉 〈pxpy〉 〈pxz〉 〈pxδ〉
〈yx〉 〈ypx〉 〈y2〉 〈ypy〉 〈yz〉 〈yδ〉
〈pyx〉 〈pypx〉 〈pyy〉 〈p2

y〉 〈pyz〉 〈pyδ〉
〈zx〉 〈zpx〉 〈zy〉 〈zpy〉 〈z2〉 〈zδ〉
〈δx〉 〈δpx〉 〈δy〉 〈δpy〉 〈δz〉 〈δ2〉

 . (95)

This can be conveniently written as:

Σij = 〈xixj〉, (96)

where Σij is the (i, j) component of the Sigma matrix, and the set xi (for
i = 1 . . .6) are the dynamical variables. The brackets 〈·〉 indicate an average
over all particles in the bunch.

In the absence of coupling, the sigma matrix will be block diagonal. We are
interested in the more general case, where coupling is present.
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Appendix E: The envelope method for computing emittances

The emittances and the lattice functions can be calculated from the sigma
matrix, and vice-versa.

Consider the (simpler) case of motion in one degree of freedom. The sigma
matrix in this case is:

Σ =

(
〈x2〉 〈xpx〉
〈pxx〉 〈p2

x〉

)
=

(
βx −αx
−αx γx

)
εx. (97)

Note that given a Sigma matrix, we can compute the emittance as follows.
First, define the matrix S:

S =

(
0 1
−1 0

)
. (98)

Then, the eigenvalues of ΣS are ±iεx. (The proof of this is left as an
exercise.)
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Appendix E: The envelope method for computing emittances

Now, we can show that (under certain assumptions) the emittance is
conserved as a bunch is transported along a beam line.

The linear transformation in phase space coordinates of a particle in the
bunch between two points in the beam line can be represented by a matrix
M : (

x
px

)
7→M

(
x
px

)
. (99)

If (for the moment) we neglect radiation and certain other effects, and
consider only the Lorentz force on particles from the external
electromagnetic fields, then the transport is symplectic.

Physically, this means that the phase-space volume of the bunch is
conserved as the bunch moves along the beam line.

Mathematically, it means that M is a symplectic matrix, i.e. M satisfies:

MTSM = S. (100)
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Appendix E: The envelope method for computing emittances

Now consider how the Sigma matrix transforms. Since it is written as the
product of the phase-space coordinates averaged over the bunch, we have:(

x
px

)
7→M

(
x
px

)
, ∴ Σ 7→MΣMT. (101)

Since S is a constant matrix, it immediately follows that:

ΣS 7→MΣMTS. (102)

Then, using the fact that M is symplectic, we have:

ΣS 7→MΣSM−1. (103)

This is a similarity transformation of ΣS: the eigenvalues of any matrix are
conserved under a similarity transformation. Therefore, since the
eigenvalues of ΣS give the emittance of the bunch, it follows that the
emittances are conserved under linear, symplectic transport.
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Appendix E: The envelope method for computing emittances

The above discussion immediately generalises to three degrees of freedom.

We define the matrix S in three degrees of freedom by:

§ =


0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

 . (104)

The six eigenvalues of ΣS are then:

±iεx, ±iεy, ±iεz. (105)

These quantities are all conserved under linear, symplectic transport.

Even if, as is generally the case, the Sigma matrix is not block-diagonal
(i.e. if there is coupling present), then we can still find three invariant
emittances using this method, without any modification.
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Appendix E: The envelope method for computing emittances

If M is a matrix that represents the linear single-turn transformation at
some point in a storage ring, then an invariant or “matched” distribution is
one that satisfies:

Σ 7→MΣMT = Σ. (106)

(In general, all the particles in the bunch change position in phase space
after one turn around the ring: but for a matched distribution, the second
order moments remain the same.)

This is not sufficient to determine the beam emittances – though this
condition will determine the lattice functions (which can be found from the
eigenvectors of ΣS).

In other words, the matched distribution condition determines the shape of
the bunch, but not the size of the bunch. This makes sense: after all, in a
proton storage ring, we can have a matched bunch of any emittance.

However, in an electron storage ring, we know that radiation effects will
damp the emittances to some equilibrium values.

We shall now show how to apply the concept of a matched distribution,
when radiation effects are included, to find the equilibrium emittances in an
electron storage ring.
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Appendix E: The envelope method for computing emittances

In an electron storage ring, we must make two modifications to the
single-turn transformation to account for radiation effects:

1. The matrix M will no longer be symplectic: this accounts for radiation
damping.

2. As well as first-order terms in the transformation (represented by the
matrix M), there will be zeroth-order terms: these will turn out to
correspond to the quantum excitation.

The condition for a matched distribution should then be written:

Σ = MΣMT +D, (107)

where M and D are constant, non-symplectic matrices that represent the
first-order and zeroth-order terms in the single-turn transformation,
respectively.

This equation is sufficient to determine the Sigma matrix uniquely - in other
words, using just this equation (with known M and D) we can find the
bunch emittances and the matched lattice functions.
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Appendix E: The envelope method for computing emittances

The envelope method for finding the equilibrium emittances in a storage
ring consists of three steps:

1. Find the first-order terms M and zeroth-order terms D in the
single-turn transformation:

Σ 7→MΣMT +D. (108)

2. Use the matching condition:

Σ = MΣMT +D, (109)

to determine the Sigma matrix.

3. Find the equilibrium emittances from the eigenvalues of ΣS.

Note: strictly speaking, since M is not symplectic, the emittances are not
invariant as the bunch moves around the ring. Therefore, we may expect to
find a different emittance at each point around the ring. However, if
radiation effects are fairly small, then the variations in the emittances will
also be small.
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Appendix E: The envelope method for computing emittances

As an illustration of the transformation matrices M and D, we shall consider
a thin “slice” of a dipole.

The thin slice of dipole is an important case:

• in most storage rings, radiation effects are only significant in dipoles;

• “complete” dipoles can be constructed by concatenating the maps for a
number of slices.

Once we have a map for a thin slice of dipole, we simply need to
concatenate the maps for all the elements in the ring, to construct the map
for a complete turn starting at any point.
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Appendix E: The envelope method for computing emittances

Recall that the transformation for the phase space variables in the emission
of radiation carrying momentum dp is:

x 7→ x y 7→ y z 7→ z

px 7→
(

1− dp
P0

)
px py 7→

(
1− dp

P0

)
py δ 7→ δ − dp

P0

(110)

where P0 is the reference momentum. In general, dp is a function of the
coordinates.

To find the transformation matrices M and D, we find an explicit expression
for dp/P0, and then write down the above transformations to first order.
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