Exercises for tutorial on "Non-linear Dynamics" at the CAS 2015 in Otwock

W. Herr, BE Department, CERN, 1211-Geneva 23

Abstract

Exercises complementing the lectures on "Tools for Non-Linear Dynamics".

Recommendation: pick a few of the exercises and try to solve them in detail

1 Exercise 1

1.1 Problem:

Assume a thin lens kick $f(x)$ and show that it is always symplectic (use 1D to keep it simple):

$$
\binom{x}{x^{\prime}}=\binom{x_{0}}{x_{0}^{\prime}+f\left(x_{0}\right)}
$$

2 Exercise 2

2.1 Problem:

Assume two kicks at the end and beginning of a drift space: Compute to lumped

matrix $\mathcal{M}_{\text {lumped }}$.

3 Exercise 3

3.1 Problem:

Use the function $f(x, p)=a \cdot x+b \cdot p \quad$ (where a and b are constants) to get the maps:

$$
\begin{aligned}
& e^{: f:} x=? \\
& e^{: f:} p=?
\end{aligned}
$$

What is the physical meaning?

4 Exercise 4

4.1 Problem:

a) Assume a matrix M of the type:

$$
M=\left(\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right)
$$

described by a generator f. Use the properties of Lie transforms to evaluate the effect of this matrix on the moments $x^{2}, x p, p^{2}$:

$$
\begin{aligned}
& e^{: f:} x^{2}=? \\
& e^{: f:} p^{2}=? \\
& e^{: f:} x p=?
\end{aligned}
$$

b) Discuss the results, considering what you learnt in previous lectures.

5 Exercise 5

5.1 Problem:

Assume a function:

$$
f(x)=\frac{1}{x+\frac{1}{x}}
$$

Compute the first derivative $f^{\prime}(x)$ fo $x=2$ using the Automatic Differentiation algorithm.

6 Exercise 6

6.1 Problem:

a) Compute the map:

$$
\begin{gathered}
X(L)=? \\
P(L)=X^{\prime}(L)=?
\end{gathered}
$$

for a thick sextupole (1D) (length L, strength k) with the equation of motion:

$$
x^{\prime \prime}=-k \cdot x^{2}
$$

up to order $\mathcal{O}\left(L^{2}\right)$, using the symplectic integration method.
b) Compute the map:

$$
X(L)=?
$$

for a thick sextupole (2D) with the Hamiltonian (to give the equation of motion above):

$$
H=\frac{1}{3} k\left(x^{3}-3 x y^{2}\right)+\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}\right)
$$

using the Lie transformation method, compare with the solution from a).

