Exercises for tutorial on "Non-linear Dynamics" at the CAS 2015 in Otwock

W. Herr, BE Department, CERN, 1211-Geneva 23

Abstract
Exercises and solutions complementing the lectures on "Tools for Non-Linear Dynamics".

Recommendation: pick a few of the exercises and try to solve them in detail

1 Exercise 1

1.1 Problem:

Assume a thin lens kick $f(x)$ and show that it is always symplectic (use 1D to keep it simple):

$$
\binom{x}{x^{\prime}}=\binom{x_{0}}{x_{0}^{\prime}+f\left(x_{0}\right)}
$$

1.2 Solution:

The Jacobian of this kick is:

$$
M=\left(\begin{array}{cc}
1 & 0 \\
f^{\prime}\left(x_{0}\right) & 1
\end{array}\right)
$$

where $f^{\prime}\left(x_{0}\right)$ is $\frac{\partial x^{\prime}}{\partial x_{0}}$.
we compute:

$$
\left(\begin{array}{cc}
1 & f^{\prime}\left(x_{0}\right) \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
f^{\prime}\left(x_{0}\right) & 1
\end{array}\right)=\left(\begin{array}{cc}
f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{0}\right) & 1 \\
-1 & 0
\end{array}\right)=\mathcal{S}
$$

This is the symplectic condition.

2 Exercise 2

2.1 Problem:

Assume two kicks at the end and beginning of a drift space: Compute to lumped

$\operatorname{matrix} \mathcal{M}_{\text {lumped }}$.

2.2 Solution:

$$
\mathcal{M}_{\text {lumped }}=\left(\begin{array}{cc}
1 & 0 \\
-\frac{k L}{2} & 1
\end{array}\right)\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-\frac{k L}{2} & 1
\end{array}\right)=\left(\begin{array}{cc}
1-\frac{1}{2} K L^{2} & L-\frac{1}{4} K L^{3} \\
-K \cdot L & 1-\frac{1}{2} K L^{2}
\end{array}\right)
$$

This is the same as the matrix with one kick in the centre, i.e. also a matrix with second order precision.

3 Exercise 3

3.1 Problem:

Use the function $f(x, p)=a \cdot x+b \cdot p \quad$ (where a and b are constants) to get the maps:

$$
\begin{aligned}
& e^{: f:} x=? \\
& e^{: f:} p=?
\end{aligned}
$$

What is the physical meaning?

3.2 Solution:

The Lie transformation for $f(x, p)=a \cdot x+b \cdot p$ is:

$$
e^{: f:}=e^{: a \cdot x+b \cdot p:}=e^{: a \cdot x:} e^{: b \cdot p:}
$$

the latter can be easily evaluated using the solution for general monomials:

$$
\begin{gathered}
e^{: a \cdot x:} x=x_{0} \\
e^{: b \cdot p:} x=-b \\
e^{: a \cdot x+b \cdot p:} x=x_{0}-b \\
e^{: a \cdot x:} p=a \\
e^{b \cdot p: p}=p_{0} \\
e^{: a \cdot x+b \cdot p:} p=p_{0}+a
\end{gathered}
$$

The map would be:

$$
\begin{aligned}
& x=x_{0}-b \\
& p=p_{0}+a
\end{aligned}
$$

This map is a shift of the coordinates.

4 Exercise 4

4.1 Problem:

a) Assume a matrix M of the type:

$$
M=\left(\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right)
$$

described by a generator f. Use the properties of Lie transforms to evaluate the effect of this matrix on the moments $x^{2}, x p, p^{2}$:

$$
\begin{aligned}
& e^{: f:} x^{2}=? \\
& e^{: f:} p^{2}=? \\
& e^{: f:} x p=?
\end{aligned}
$$

b) Discuss the results, considering what you learnt in previous lectures.

4.2 Solution:

a) From the matrix M we can directly write:

$$
e^{: f:} x=\left(m_{11} x+m_{12} p\right)
$$

and

$$
e^{: f:} p=\left(m_{21} x+m_{22} p\right)
$$

We know from the lecture some properties of Lie transforms (see lecture) and:

$$
e^{: f:} x^{2}=\left(e^{: f:} x\right)^{2}
$$

therefore:

$$
\begin{gathered}
\left(e^{: f:} x\right)^{2}=\left(m_{11} x+m_{12} p\right)^{2} \\
\left(e^{: f:} x\right)^{2}=m_{11}^{2} x^{2}+2 m_{11} m_{12} x p+m_{12}^{2} p^{2}
\end{gathered}
$$

We also can compute:

$$
e^{: f:} p^{2}=\left(e^{: f:} p\right)^{2}
$$

therefore:

$$
\begin{gathered}
\left(e^{: f:} p\right)^{2}=\left(m_{21} x+m_{22} p\right)^{2} \\
\left(e^{: f:} p\right)^{2}=m_{21}^{2} x^{2}+2 m_{21} m_{22} x p+m_{22}^{2} p^{2}
\end{gathered}
$$

also for the moment $x p$:

$$
e^{: f:} x p=\left(e^{: f:} x\right)\left(e^{: f:} p\right) \quad \text { (see lecture) }
$$

$$
e^{: f:} x p=m_{11} m_{21} x^{2}+\left(m_{11} m_{22}+m_{12} m_{21}\right) x p+m_{12} m_{22} p^{2}
$$

To summarize the moments we re-write the above in matrix form:

$$
\left(\begin{array}{l}
x^{2} \\
x p \\
p^{2}
\end{array}\right)_{s_{2}}=\left(\begin{array}{ccc}
m_{11}^{2} & 2 m_{11} m_{12} & m_{12}^{2} \\
m_{11} m_{21} & m_{11} m_{22}+m_{12} m_{21} & m_{12} m_{22} \\
m_{21}^{2} & 2 m_{21} m_{22} & m_{22}^{2}
\end{array}\right) \quad \circ \quad\left(\begin{array}{l}
x^{2} \\
x p \\
p^{2}
\end{array}\right)_{s_{1}}
$$

b) This is the transfer matrix for the Twiss parameters β, α, and γ. (which are basically moments !)

5 Exercise 5

5.1 Problem:

Assume a function:

$$
f(x)=\frac{1}{x+\frac{1}{x}}
$$

Compute the first derivative $f^{\prime}(x)$ fo $x=2$ using the Automatic Differentiation algorithm.

5.2 Solution:

For comparison, school calculus gives us:

$$
f^{\prime}(x)=-\frac{1-\frac{1}{x^{2}}}{\left(x+\frac{1}{x}\right)^{2}}
$$

For $x=2$ we get therefore: $f^{\prime}(2)=-\frac{3}{25}$
To use differential Algebra, we replace x by the pair $(a, \delta)=(2,1)=\left(q_{0}, q_{1}\right)$ From the lecture we know the inverse of this pair:

$$
\left(q_{0}, q_{1}\right)^{-1}=\left(\frac{1}{q_{0}},-\frac{q_{1}}{q_{0}^{2}}\right)
$$

and

$$
\left(q_{0}, q_{1}\right)+\left(r_{0}, r_{1}\right)=\left(q_{0}+r_{0}, q_{1}+r_{1}\right)
$$

Substituting it into the function $f(x)$:

$$
f(2,1)=\frac{1}{(2,1)+\frac{1}{(2,1)}}=\frac{1}{(2,1)+\left(\frac{1}{2},-\frac{1}{4}\right)}=\frac{1}{\left(\frac{5}{2}, \frac{3}{4}\right)}=\left(\frac{2}{5},-\frac{3}{25}\right)
$$

So we have $f(2)=\frac{2}{5}$ and $f^{\prime}(2)=-\frac{3}{25}$

6 Exercise 6

6.1 Problem:

a) Compute the map:

$$
\begin{gathered}
X(L)=? \\
P(L)=X^{\prime}(L)=?
\end{gathered}
$$

for a thick sextupole (1D) (length L, strength k) with the equation of motion:

$$
x^{\prime \prime}=-k \cdot x^{2}
$$

up to order $\mathcal{O}\left(L^{2}\right)$, using the symplectic integration method.
b) Compute the map:

$$
X(L)=?
$$

for a thick sextupole (2D) with the Hamiltonian (to give the equation of motion above):

$$
H=\frac{1}{3} k\left(x^{3}-3 x y^{2}\right)+\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}\right)
$$

using the Lie transformation method, compare with the solution from a).

6.2 Solution:

a) A solution to order $\mathcal{O}\left(L^{2}\right)$ is given by a thin lens approximation with a single kick in the centre of the element. The map can be written as a "leap-frog" integration:

$$
\begin{aligned}
x(L) & \approx x_{0}+\frac{L}{2}\left(x_{0}^{\prime}+x^{\prime}(L)\right) \\
x^{\prime}(L) & \approx x_{0}^{\prime}+L f\left(x_{0}+\frac{L}{2} x_{0}^{\prime}\right)
\end{aligned}
$$

For the sextupole with:

$$
x^{\prime \prime}=-k \cdot x^{2}=f(x)
$$

using the thin lens approximation (type D in the lecture) gives:

$$
\begin{aligned}
x(L) & =x_{0}+x_{0}^{\prime} L-\frac{1}{2} k x_{0}^{2} L^{2}-\frac{1}{2} k x_{0} x_{0}^{\prime} L^{3}-\frac{1}{8} k x_{0}^{\prime 2} L^{4} \\
x^{\prime}(L) & =x_{0}^{\prime}-k x_{0}^{2} L-k x_{0} x_{0}^{\prime} L^{2}-\frac{1}{4} k x_{0}^{\prime 2} L^{3}
\end{aligned}
$$

Map for thick sextupole of length L in thin lens approximation, accurate to $\mathcal{O}\left(L^{2}\right)$
b) In the case an element is described by a Hamiltonian H, the Lie map of an element of length L and the Hamiltonian H is:

$$
\begin{equation*}
e^{-L: H:}=\sum_{i=0}^{\infty} \frac{1}{i!}(-L: H:)^{i} \tag{1}
\end{equation*}
$$

For example, the Hamiltonian for a thick sextupole is:

$$
\begin{equation*}
H=\frac{1}{3} k\left(x^{3}-3 x y^{2}\right)+\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}\right) \tag{2}
\end{equation*}
$$

To find the transformation we search for:

$$
\begin{gather*}
e^{-L: H:} x \quad \text { and } \quad e^{-L: H:} p_{x} \quad \text { i.e. for } \tag{3}\\
X(L)=e^{-L: H:} x=\sum_{i=0}^{\infty} \frac{1}{i!}(-L: H:)^{i} x \tag{4}
\end{gather*}
$$

We can compute:

$$
\begin{equation*}
: H:^{i} x \tag{5}
\end{equation*}
$$

for sufficiently large i :

$$
\begin{gather*}
: H:{ }^{0} x=x \tag{6}\\
: H:^{1} x=\left(\frac{\partial H}{\partial x} \frac{\partial x}{\partial p_{x}}-\frac{\partial H}{\partial p_{x}} \frac{\partial x}{\partial x}\right)=-p_{x} \tag{7}\\
: H::^{2} x=: H:\left(-p_{x}\right)=\left(\frac{\partial H}{\partial x} \frac{\partial\left(-p_{x}\right)}{\partial p_{x}}-\frac{\partial H}{\partial p_{x}} \frac{\partial\left(-p_{x}\right)}{\partial x}\right)=-k\left(x^{2}-y^{2}\right) \tag{8}\\
: H::^{3} x=: H:\left(-k\left(x^{2}-y^{2}\right)\right)= \tag{9}\\
\left(\frac{\partial H}{\partial x} \frac{\partial\left(-k\left(x^{2}-y^{2}\right)\right)}{\partial p_{x}}-\frac{\partial H}{\partial p_{x}} \frac{\partial\left(-k\left(x^{2}-y^{2}\right)\right)}{\partial x}\right)=2 k x p_{x}
\end{gather*}
$$

The same for y to get $2 k y p_{y}$ and we have:

$$
\begin{equation*}
: H:^{3} x=2 k\left(x p_{x}-y p_{y}\right) \tag{10}
\end{equation*}
$$

then we obtain:

$$
\begin{equation*}
X(L)=e^{-L: H:} x=x+p_{x} L-\frac{1}{2} k L^{2}\left(x^{2}-y^{2}\right)-\frac{1}{3} k L^{3}\left(x p_{x}-y p_{y}\right)+\ldots \tag{11}
\end{equation*}
$$

Comparison with the leap-frog algorithm shows deviation of order $\mathcal{O}\left(L^{3}\right)$.

