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1 Exercise 1

1.1 Problem:

Assume a thin lens kick f(z) and show that it is always symplectic (use 1D to

keep it simple):
( i ) < Zo )
x! ZL‘/O + f(ZL‘Q)

The Jacobian of this kick is:

1.2 Solution:

where f'(zg) is g—gf;.

we compute:
()5 (5t 8) = (77 1) - s

This is the symplectic condition.



2 Exercise 2

2.1 Problem:

Assume two kicks at the end and beginning of a drift space: Compute to lumped

K L/2 K L/2

matrix Miymped-

2.2 Solution:
M (1 0 1 L 1 0\ (1-iKL* L-iKL?
lumped — _% 1 0 1 _% - —K- L 1—%KL2

This is the same as the matrix with one kick in the centre, i.e. also a matrix with
second order precision.



3 Exercise 3

3.1 Problem:
Use the function f(z,p) = a-x+b-p (where a and b are constants) to get the
maps:
elip =7
et p =7
What is the physical meaning ?

3.2 Solution:

The Lie transformation for f(x,p) = a-x+b-p is:

6:f: :a-z+b-p: 'a-x:ezb~p:

= € = €

the latter can be easily evaluated using the solution for general monomials:

T = x
etry = —p

e:a.m—l—b-p:x =15 — b

e:a-m:p = q
e"p = po
e:a-:rer-p:p =y +a

The map would be:

This map is a shift of the coordinates.



4 Exercise 4

4.1 Problem:

a)Assume a matrix M of the type:

M= myp M2
Ma1 M2z

described by a generator f. Use the properties of Lie transforms to evaluate the
effect of this matrix on the moments x2, xp, p*:

elip? =7
6:f:pQ —9
e:f:xp =7

b) Discuss the results, considering what you learnt in previous lectures.

4.2 Solution:

a) From the matrix M we can directly write:
elx = (myx + magp)

and
ezf:p = (Ma1x + Maap)

We know from the lecture some properties of Lie transforms (see lecture) and:
e:f:x2 — (e:f:x,)2
therefore:
(eFx)? = (myx 4 myap)?
(elx)? =mi2® + 2 mymiaxp + mi,p°

We also can compute:
6:f:pQ — (ezf:p)Q

therefore:
(e:f:p)Q = (mglfL‘ + m22p)2
(ep)? = mia? + 2 moymagzp + miyp?

also for the moment xp:

efiap = (ez) (e p) (see lecture)

bt



f: 2 2
efffpzmummff + (mumas + miaMmor)Tp + MiaMaop

To summarize the moments we re-write the above in matrix form:

2 2 2 2
x mi 2miimaa mis T
rp = | M11Mo1 M11Maa + M12Mor  M12Ma2 o rp
2 2 2 2
p may 2mao1 Mgy Moo p

52 S1

b) This is the transfer matrix for the Twiss parameters 3, «, and . (which
are basically moments !)



5 Exercise 5

5.1 Problem:

Assume a function:

Compute the first derivative f’(x) fo x = 2 using the Automatic Differentiation
algorithm.

5.2 Solution:

For comparison, school calculus gives us:

For z = 2 we get therefore: f'(2) = —5¢

To use differential Algebra, we replace x by the pair (a,0) = (2,1) = (g0, ¢1)
From the lecture we know the inverse of this pair:

_ 1 Q1>
1

qo, 1 = T "o
( ) (% q%

(90, q1) + (ro,71) = (g0 + 70, q1 +71)
Substituting it into the function f(z):

and

LA Oy s el Yy e e s G0 A

So we have f(2) = 2 and f/(2) = —2



6 Exercise 6

6.1 Problem:

a) Compute the map:
X (L) ="

P(L)=X'(L) ="
for a thick sextupole (1D) (length L, strength k) with the equation of motion:
' =—k-x
up to order O(L?), using the symplectic integration method.
b) Compute the map:
X(L) =7

for a thick sextupole (2D) with the Hamiltonian (to give the equation of motion
above):

]' 3 2 ]‘ 2 2
H = gk(l’ — 3y )+§(Px+py)

using the Lie transformation method, compare with the solution from a).
6.2 Solution:

a) A solution to order O(L?) is given by a thin lens approximation with a single
kick in the centre of the element. The map can be written as a ”leap-frog”
integration:

o(L) ~ m+ g(:clo + 2'(L))

L
(L) ~ wh+ Lf(m + Sah)
For the sextupole with:
7 = —k-2? = f(z)

using the thin lens approximation (type D in the lecture) gives:
/ L 2y 1 rr3_ Ly o mra
z(L) = wo+aoLl — ékxOL - ékxoxOL - gk% L

1
(L) = ) — kaiL — kxoryL?* — ka{)zL?’



Map for thick sextupole of length L in thin lens approximation, accurate to O(L?)

b) In the case an element is described by a Hamiltonian H, the Lie map of
an element of length L and the Hamiltonian H is:

e LiH: i l(_L cH )Z <1>

=
For example, the Hamiltonian for a thick sextupole is:

1 1
H= gk(l’s — 3zy®) + 5(173; +p}) (2)
To find the transformation we search for:
e By and e, e for (3)
X(L) = eHp=>" ,—'(—L cH:)'x (4)
=
We can compute: _
cH 'z (5)
for sufficiently large 7:
cH %z =x (6)
OH 0x  O0H Oz
cHlr = — — — = — Pz 7
v (8:5 Op,  Opy 8:6) P (7)
“H2x=:H:(-p,)=|— _ — k(22— 2
o= H o) = (GE 000 - SR @)
CH Pr = H:(—k(2® —y?)) = 9)
— 2 _ 42 _ 2 _ 2
O O(=k(a*=y%) _ OH Ok =)\ _ o
The same for y to get 2kyp, and we have:
 H Pz = 2k(xp, — yp,) (10)

then we obtain:

1. 1 1
X(L) = e ¥ p =g 4 p, L — 5l<;L2(:c2 —y%) — gkL?’(ﬂ?pz —ypy) + ... (12)

Comparison with the leap-frog algorithm shows deviation of order O(L?).



