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CERN Accelerator School 

Warsaw, Poland, October 2015 

 

Low Emittance Machines 
 

Solutions to Tutorial Problems 
 

Lecture 1 Problem 

 
1. The DIAMOND storage ring has a circumference of 560 m, and contains 48 dipole 

magnets (without quadrupole gradient), each of length 1 meter.  The beam energy is 3 

GeV. 

 

a. Calculate: 

i. the bending radius of each dipole; 

ii. the second and third synchrotron radiation integrals; 

iii. the energy loss of each particle per turn through the ring; 

iv. the horizontal, vertical and longitudinal damping times; 

v. the equilibrium energy spread. 

b. Discuss the effects on the beam parameters, and the impact on machine performance, 

if the existing dipoles were replaced by shorter dipoles. 

 

Solution: 

 

1.a) i. The dipoles on their own would form a ring of circumference 48 m.  

Therefore, the bending radius of each dipole is: 

m 64.7
2

m 48



   

 

1.a) ii. The second synchrotron radiation integral is: 

1

22 m 822.0
21   




dsI   

 The third synchrotron radiation integral is: 

2

233 m 108.0
21   




dsI   

 

1.a) iii. The energy loss per turn is: 
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1.a) iv. Assuming that the damping partition numbers are jx = jy = 1, and jz = 2 (good 

approximations for jx and jz, given no quadrupole gradient in the dipoles), the 

transverse damping times are: 

ms 0.122 0

0

0  T
U

E
yx    

 and the longitudinal damping time is: 

ms 98.50

0

0  T
U

E
z   

 

1.a) v. The equilibrium energy spread is found from: 

2

322

Ij

I
C

z

q    

 which gives: 

41031.9    

 
1.b) Reducing the dipole length would have the following effects: 

 The dipole field would need to increase in proportion, to maintain the same total 

bending angle. 

 This would reduce the bending radius (in proportion to the dipole length). 

 The dispersion would remain roughly constant: the increase in dipole field will tend 

to increase the dispersion, but this would be mostly cancelled by the reduction in the 

dipole length. 

 There would be only a small change in the first synchrotron radiation integral, I1 

(given by the integral of the dispersion divided by the bending radius).  This means 

that the momentum compaction factor would remain roughly constant. 

 The second synchrotron radiation integral would be increased: hence, a larger 

radiation energy loss per turn, and a shorter damping time. 

 The third synchrotron radiation integral would be increased more significantly than 

the second SR integral: hence, the natural energy spread would be increased. 

 The increase in SR energy loss would mean (for the same RF voltage and 

frequency) a change in synchronous phase, such that the RF focusing is reduced.  

Hence, combined with the increased energy spread (and roughly constant 

momentum compaction factor), the bunch length would be increased. 

 There would be some increase in I4; but with no gradient in the dipoles, this would 

not in itself have any significant impact on the damping partition numbers. 

 The impact of the dipole length on I5 is not obvious: in fact (from Lecture 2), we 

expect only a small effect on the natural emittance. 

Increasing the dipole field will change the SR spectrum from the dipole (to shorter 

wavelengths): this may well be a desirable impact.  Reduction in damping time will 

generally be beneficial for machine operation (improved stability).  The increase in 

energy spread could also improve stability (increased Landau damping); however, it 

may be undesirable from other considerations (increased beam size in dispersive 

regions).  Also, if a constant bunch length is required, then additional RF power will be 

needed. 



CERN Accelerator School: Low Emittance Machines  Solutions to Tutorial Problems 

 3 

Lecture 2 Problem 

 

2. a. Show that, for small phase advance x in a FODO cell, the natural emittance 

of a FODO lattice is given approximately by: 

3

2

0 8 









x

qC



  

where  is the bending angle of one dipole in the cell, and  is the relativistic 

factor. 

 

 b. Given data on a number of storage ring lattices: 

 

Storage ring Lattice type Beam energy Number of dipoles 

SRS 72° FODO 2 GeV 16 

SRS (HBL) 140° FODO 2 GeV 16 

APS DBA 7 GeV 80 

DIAMOND DBA 3 GeV 48 

ALS TBA 1.9 GeV 36 

 

estimate the natural emittance for each ring, assuming that the lattice is tuned 

for the minimum emittance in each case (with zero dispersion in the straight 

sections of the achromats).  Note: use the small phase advance approximation 

for the FODO lattices – even though this may not be very accurate in these 

cases! 

 

Explain why the emittances for the achromat lattices are likely to be somewhat 

different (larger or smaller) in practice than the values you have calculated. 

 

Solution: 

 

2.a) The natural emittance in a FODO lattice is given approximately by: 

3

3

2
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 
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Cq  (1) 

 where f is the focal length of a quadrupole, L is the length of a dipole (assumed 

to fill the space between quadrupoles) and is the bending angle of a dipole.  

We also have for the phase advance per cell: 

2

2

2
1cos

f

L
x    

 For x << 1, we can write: 

2

2
11cos xx     
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Hence: 

xL

f



1
   

Substituting into equation (1) gives: 
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 which is valid for x << 1. 

 

 

2.b) The general expression for the minimum natural emittance in a lattice is: 

32

0  qFC   

where F is a numerical factor determined by the type of lattice, and  is the 

bending angle of one dipole. 

 

Storage ring F  0 

SRS 03.4  0.393 1430 nm 

SRS (HBL) 548.0  0.393 195 nm 

APS 1541  0.0785 2.25 nm 

DIAMOND 1541  0.131 1.91 nm 

ALS 1591  0.175 0.81 nm 

 

 In practice, achromat lattices are often detuned from “ideal” emittance 

conditions, to improve dynamic aperture.  This results in a larger emittance 

than might otherwise be achieved, given zero dispersion in the straights.  On 

the other hand, it is possible to detune the dispersion, allowing non-zero 

dispersion in the straights, to approach the conditions for a TME lattice, 

thereby reducing the emittance. 

 

 The actual emittances in the above rings are: 

 

Storage ring 0 

SRS 1500 nm 

SRS (HBL) 110 nm 

APS 7.5 nm 

DIAMOND 2.7 nm 

ALS 5.6 nm 
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Lecture 3 Problem 

 
3. A design for the ILC damping rings, with arcs consisting of simple FODO cells, includes 

two families of sextupoles with the following parameters: 

 

 SF sextupoles SD sextupoles 

Number of magnets 196 196 

Integrated strength, k2L 0.351 m
-2

 -0.654 m
-2

 

Horizontal beta function, x 34.0 m 9.38 m 

Vertical beta function, y 9.79 m 35.2 m 

Horizontal dispersion, x 0.553 m 0.286 m 

 

The horizontal and vertical tunes are 61.121 and 60.410, respectively; the natural emittance 

is 

0.64 nm, and the natural energy spread is 0.13%.  The dipoles have no quadrupole gradient. 

a. Estimate the vertical emittance that would result from vertical sextupole alignment 

errors with 100 m rms, in a lattice otherwise free of alignment and tuning errors. 

b. What level of sextupole alignment would be required to achieve (under the same 

conditions as in part (a)) an expected vertical emittance of 2 pm? 

 

Solution: 

 

Sextupole parameters SF SD 
 

Number of magnets 196 196 
 

Integrated strength, k2L (m
-2

) 0.351 -0.654 
 

Horizontal beta function, x (m) 34 9.38 
 

Vertical beta function, y (m) 9.79 35.2 
 

Horizontal dispersion, x (m) 0.553 0.286 
 

    
General lattice parameters   

  
x 0.121 

  
y 0.410 

  
 1.30E-03 

  
0 (m) 6.40E-10 

  
sqrt(<YS

2
>) (m) 1.00E-04 

  
jy 1.0 

  
jz 2.0 

  

    <y
2
/y> (m) 4.25E-07 

 
from equation (29) 

dispersion contribution to y (m) 2.87E-12 

 
from equation (40) 

  
  <

2
/

2
> 0.000108 

 
from equation (22) 

coupling contribution to y (m) 1.73E-14 

 
from equation (19) 

  
  total expected y (m) 2.89E-12 

 
sum of dispersion and coupling contributions 
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Note that the vertical dispersion is expected to make a dominant contribution to the 

vertical emittance in this case.  This is not terribly unusual, but depends a lot on the 

lattice design. 

 

The expected emittance should only be taken as an indicative value: the real value 

will depend very much on the particular set of machine errors present, and can easily 

range over an order of magnitude, for a given rms of alignment errors. 

 

Including only sextupole alignment errors is a very artificial situation.  Quadrupole 

alignment errors will generate significant orbit distortion, and this is likely to 

dominate the beam offset in the sextupoles. 

 

Since the emittance varies as the mean square of the sextupole alignment, to reduce 

the emittance by a factor of 2.00/2.89 (to give an expected vertical emittance of 2 pm), 

the sextupole alignment rms must be reduced by a factor 83.089.2/00.2  , i.e. to 

83 m.  This is not a realistic alignment accuracy using survey techniques alone (even 

aside from the contributions from alignment errors on dipoles and quadrupoles).  

Beam-based techniques are certainly required to achieve vertical emittances of order a 

few picometers. 
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Optional Extra Problem: ILC Damping Rings Case Study 

 

4. The damping rings in the International Linear Collider (ILC) serve the purpose of 

accepting large-emittance electron or positron beams from the particle sources, 

and producing low-emittance, highly stable beams for acceleration in the linacs 

and collision at the interaction point.  Each beam is stored for the time between 

machine pulses, which is 200 ms in the case of ILC. 

 

The damping rings are synchrotrons, similar to the storage rings in third 

generation light sources, but rather larger.  Some of the parameter specifications 

for the damping rings are as follows: 

 

Circumference 6.6 km 

Energy 5 GeV 

Injected emittance (x and y) 1 m 

Extracted horizontal emittance 0.8 nm 

Extracted vertical emittance 2 pm 

Equilibrium vertical emittance 1.4 pm 

Maximum extracted energy spread 0.13% 

Beam store time 200 ms 

Lattice type TME 

Number of dipoles 120 

Dipole length 6 m 

 

a. Calculate the transverse damping times required to achieve the extracted 

emittances starting with the specified injected emittances, in the given store 

time. 

b. Estimate (i) the damping times, and (ii) the natural emittance that would be 

achieved in the lattice without any damping wiggler (i.e. with the only 

synchrotron radiation energy loss provided by the dipoles).  Assume that the 

lattice is properly tuned for the minimum possible natural emittance. 

c. Estimate the maximum wiggler peak field allowed by the specified extracted 

energy spread. 

d. Assuming the wiggler peak field is the maximum allowed by the energy 

spread, estimate the length of damping wiggler needed to achieve the required 

damping times. 

e. Assuming an average horizontal beta function in the wiggler of 20 m, estimate 

the maximum wiggler period in order to achieve the specified extracted 

horizontal emittance. 
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Solution: 

 

4.a) The emittance evolves as: 

     

       













































t

tt
t

2
exp0

2
exp1

2
exp0

  

 where  is the damping time.  Therefore: 

   
    



















 t

t 0
ln

2

1
  

 Substituting in values for the injected, equilibrium and extracted vertical emittance: 

16.7


t
  

 So, with the store time t = 200 ms, we get: 

ms 9.27
16.7


t

   

 The horizontal damping time will be approximately the same; but since a very 

much smaller extracted emittance is required in the vertical, the damping time 

requirements are set by the vertical emittance. 

 

4.b) (i)  The dipoles would form a ring of circumference 720 m, so the bending 

radius must be 720 m / 2 = 114.6 m.  Therefore, the dipoles make a 

contribution to the second synchrotron radiation integral: 

1

,2 m 0548.0
2 



dipI   

 If the dipoles were the only source of synchrotron radiation energy loss, the 

energy loss per turn would be: 

keV 482
2

,2

4

00  dipIE
C

U



  

 The transverse damping times (assuming the damping partition numbers are 

equal to 1) would then be: 

ms 4572 0

0

0  T
U

E
yx    

 

4.b) (ii)  For a TME lattice, the natural emittance is given by: 

32

0
1512

1
 qC   

 So with a beam energy of 5 GeV, and 120 dipoles, we find: 

nm 11.00    
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4.c) If the synchrotron radiation energy loss is dominated by the wiggler (which will 

need to be the case to achieve the specified damping times), the equilibrium 

energy spread is related to the wiggler peak field by: 

wq

w

q BC
mc

e
C 








3

4

3

4 2
2    

 With the maximum equilibrium energy spread 0.15%, the maximum wiggler 

peak field is: 

T 81.1wB   

 

 

4.d) Let us start by calculating the required energy loss per turn.  This is related to 

the transverse damping time by: 

ms 9.272 0

0

0  T
U

E
yx    

 With the given beam energy and circumference, we find: 

MeV 89.70 U   

 Now we calculate the required value for the second synchrotron radiation 

integral, I2.  This is related to the energy loss per turn by: 

MeV 89.7
2

2

4

00  IE
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U



  

 Hence, we find that: 

1

2 m 897.0 I   

 From part (b), we know that the dipoles make a contribution to the second 

synchrotron radiation integral: 

1

,2 m 0548.0
2 



dipI   

 which is much smaller than the total value of I2 required.  The rest must be 

contributed by the wiggler: 

1

,2 m 842.0 wigI   

 The wiggler contribution is related to the peak field, wiggler length, and beam 

rigidity by: 

 
1

2

2,2 m 842.0
2

1  ww
wig

LB

B
I


  

 With a beam energy of 5 GeV, the rigidity is 16.68 Tm; so with a peak field of 

1.81 T, the total length of wiggler required is: 

m 143wL   
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4.e) The synchrotron radiation energy loss is dominated by the wiggler (94%), so we 

assume that we can neglect the dipole contribution to the natural emittance (this 

isn’t completely true, but a good approximation). 

 

 In this case, the natural emittance is given by: 

23

2

0
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8
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



    

 where w is the bending radius corresponding to the peak field of the wiggler, and: 

w

wk


2
   

 where w is the wiggler period. 

 

 Assuming an average beta function of 20 m, and a natural emittance close to the 

specified extracted emittance, we find: 

m 445.0w   

 In practice, the wiggler period will probably need to be somewhat smaller than 

this, to allow some margin between the natural emittance and the specified 

extracted emittance, and (in the likely case that the lattice isn’t perfectly tuned 

for the lowest possible emittance) to allow for the quantum excitation from the 

main dipole magnets in the arcs. 

 

 


