Testing the dynamic per-query
scheduling (with a FIFO queue)

Jan lwaszkiewicz

wal 1




DAr DAar CAaccinn
I ClI I ClI~OCOOIVUII

Fa
C

1~ c
“JUUD VO.

Fa
C

e Per-Session scheduling
— Default in PROOF

e Per-Job

— Start a new session only on the master

— Call GetWorkers just when the user calls
TProof::Process.

— Possibility of keeping the inactive workers
after the query (avoid startup times) while
other jobs can use the CPUSs.




Al _hna ~h
I_UCJlU pasSed SCin

Works per-session or per-query

Assigns the workers based on:

— current load of the cluster

— relative priority of the user (static or dynamic)
Parameters

— Fraction (of free CPUS)

— Optimal no. workers per CPU core

Formula: n = (#free slots) * fraction * p

— p: weighted priority of the user/group
— #free: no. free CPU slots




11 1 1IMm

O 1o
Jueulir

A global gueue In the scheduler

To be used in case of heavy load and to
optimize the average service time

Implementation uses the PROOF
asynchronous mode.

First version with FIFO algorithm in SVN!
Enable by: schedparm queue:fifo




Sending a query Iin the dynamic
load-based mode

e Call GetWorkers

o If the list Is empty swich to the
asychronous mode and wait for a

kKPROOF_ RESUME message.
o Start workers and process the query




-
!

Fa
C

 Workload file format:
— Time
— Dataset
— No. Events
— Selector
— Username

e Generating the workload
—e.g. Downey 1997




c>" aVaea
. IIIU

T et
|1 TOlL

e Script to start a query and save result

e Script to execute the workload
— Start jobs at appropriate times




T + e
| L

c>" A ﬁl
o . MA\lial

('\;ﬁ
o019

raYe,
CO

e Read results from DB or ROOT files

e Calculate cost function of the schedule
— Convex In respect to service time
— Proportional to DS size?
— Proportional to user priority




