CMS Diphotons (and other things at 750 GeV)

John Paul Chou Rutgers University

Monday, May 2nd, 2016

MOTIVATION

[HIG-13-001]

- (Diphoton) resonances are an inherently powerful way of discovering new states
 - Two free, model independent, parameters: mass and width (and spin)
 - Whether or not a new particle fits within a well motivated scheme is a (good) problem for theorists

STRATEGY

- Select diphoton pairs and search for a local excess of events in the invariant mass spectrum
 - split events between where the two photons are located: "barrelbarrel" and "barrel-endcap"
- Measure energy scale, resolution and efficiency in data
 - $Z \rightarrow ee$ and $Z \rightarrow \ell \ell \ell \gamma$ are the primary control channels for photons
- Fit background mass spectrum directly in the data
 - bias tests performed to ensure that type-I and type-II errors are under control
 - Background composition from all sources is assumed to be smoothly falling
 - dominated by SM diphoton production and x-checked with MC predictions

DIPHOTONS AT CMS

- Status update of December 2015 result (shown above)
 - Added B=0T dataset
 - additional luminosity of 0.6/fb
 - Re-reconstruction of data with latest ECAL calibration

CHANNEL-BY-CHANNEL CALIBRATION

- Reprocessed dataset with new calibration obtained from the 2015 run
 - mass resolution improved 30%

OT RECONSTRUCTION

- Dedicated 0T vertex ID
 - Vertex selected with the highest track multiplicity

- Dedicated 0T photon ID
 - charged track multiplicity<4
 - use shower shape along phi direction (as well as eta)
 - e veto: # of missing hits > 1

Re-processed 3.8T Data

- Improved calibration yields 10% greater sensitivity
 - Fit background directly to the data using parameterization:

$$f(m_{\gamma\gamma}) = m_{\gamma\gamma}^{a+b\log m_{\gamma\gamma}}$$

750 GeV @ CMS – J^{PC} – Rutgers University – Monday, May 2nd, 2016

OT DATA

[EXO-16-018]

- Without the magnetic field, we need new algorithms for vertex selection and photon identification
 - Correct vertex assignment is ~60% at 0T (~90% at 3.8T)
 - Comparable photon efficiency: 85% (90%) at 0T (3.8T) per γ in barrel

750 GeV @ CMS – J^{PC} – Rutgers University – Monday, May 2nd, 2016

I3 TEV RESULTS

COMBINATION WITH 8 TEV

- Combined 8 TeV + 13 TeV results
 - Largest excess is observed for 750 GeV, spin-0, narrow width
 - local significance of 3.4σ , 1.6σ after look-elsewhere effect

- Dec '15 result: largest excess at 760 GeV for Γ/M=1.4x10⁻²
 - local significance of $\sim 3\sigma$, $< 1.7\sigma$ after look-elsewhere effect

[EXO-16-018]

BEST FIT X-SECTION

8 TeV Z+GAMMA RESONANCES

- Search for Z(ee or μμ)+photon resonance
 - modified isolation cone for high p_T leptons
 - suppress backgrounds with: $p_{\rm T}(\gamma) > \frac{40}{150} \cdot m_{Z\gamma}$
- Fit background directly to a smoothly falling function

$$f(m_{Z\gamma}) = m_{Z\gamma}^{a+b\log m_{Z\gamma}}$$

signal is fit to a crystal ball

Similar strategy to 8 TeV analysis

I3 TEV Z+GAMMA RESONANCES

- Considers both narrow and wide resonances
- Upper limit on σ ·BR(A \rightarrow Z γ) at 750 GeV
 - 13 TeV: ~30 fb (narrow resonance)
 - 8 TeV: ~6 fb (narrow resonance)

DATA SCOUTING/PARKING

[EXO-14-005]

- CMS has capacity to record dijet events down to 500 GeV without prescaling penalty
- Scouting particle flow HT dataset
 - Record PF information for events with HT > 450 GeV
 - Full event content is also parked
 - Can be processed if bump is found

- A lot more data needs to be taken before we can make any definitive statements about the 750 GeV excess
 - Many channels are available to help categorize the excess should it become significant
 - Don't forget that the 8 TeV dataset plays a role, too
 - even assuming gg-fusion, the 8 TeV dataset is the larger one
- Should the machine perform to expectation, we should know a lot more by the end of the year

Backup

- -

ENERGY REGRESSION

- Simultaneously adjust energy scale and resolution of electron candidates as a function of the pseudo-rapidity and cluster shape of the candidates.
 - Jr superior of the second seco Same procedure as for 3.8T but no binning in cluster shape (no radiative losses)
 - Mass scale is shifted by ~1% between 3.8T and 0T

2.7 fb⁻¹ (13 TeV, 3.8T)

simulation

100

0.6 fb⁻¹ (13 TeV, 0T)

 $Z \rightarrow ee$

⊢ data

simulation

100

m_{ee} (GeV)

mee (GeV)

 $Z \rightarrow ee$

90

90

20

5

80

80

data

ACCEPTANCE

8+13 TEV P-VALUES

8 TeV Data

