ATLAS and the search for VV Resonances $[H, A, G^*, W', Z', X] \rightarrow VV$

H. AbouZeid (UC Santa Cruz)

New Physics Interpretations @ the LHC Argonne National Laboratory May 2nd, 2016

Introduction

New opportunities for discovery at 13 TeV, especially at high mass

- Cross sections increase by large factors with respect to Run 1
- Continue Run 1 searches for high-mass diboson (WW, WZ, ZZ) resonances
 - Large focus on "merged"/boosted regime (high mass)
 - Use all hadronic + semi-leptonic channels: qqqq, lvqq, llqq, vvqq
 - Hadronic W/Z reconstructed with single large-R jet
 - At lower masses
 - Leptonic channels are more important/sensitive:
 - llll, vvll, lvlv, [lvll]
 - Where possible: combine channels in a common likelihood to extend sensitivity

Focus today

Outline

A) Run-1 recap (Motivation?)

B) Run-II

- Signal Models
- Boosted Channels (semi-leptonic + hadronic)
 - Boosted boson tagging interlude

C) Combination + Model dependence (Discussion)

VH/HH searches (ATLAS) covered by Jie Yu

Run-l Recap (This will be quick...)

Run-I Recap

May 2nd, 2016

Run-II (Once more, with feeling)

Theory/Benchmark Models S G* V

Spin-0 H (Scalar/H \rightarrow WW,ZZ)

- **NWA:** Generation using NWA heavy Higgs
 - Interpretation using CP-even scalar singlet http://arxiv.org/abs/1512.04933v1
 - Two free parameters: $\mathbf{c}_{\mathbf{H}} \mathbf{c}_{\mathbf{3}}$

c_µ: scaling coupling to h(125)
 c₃: scaling coupling to gluons

- Constrain width to be always smaller than detector resolution (and interference effects)
- **LWA:** "Large Width Approximation" \rightarrow generated with $\Gamma/m = 15\%$
 - Reweighted to *Г/m =* 5%, 10%

Spin-1 V' (W'→WZ, Z'->WW)

- Heavy Vector Triplet (HVT) phenomenological Lagrangian
- "Model A, g_v=1": Stronger constraints from leptonic searches

Spin-2: "Bulk" Randall-Sundrum (RS) Graviton (G*→WW,ZZ)

- Modification of original RS model that avoids constraints from electroweak precision tests and FCNC's
- Features enhanced B.R.'s to VV relative to RS1

H. AbouZeid [UCSC] May 2nd, 2016

Boosted Channels (Semi-leptonic + hadronic)

Boosted Channel Searches

Four ~ orthogonal search channels/final states

- $\left\{ \begin{array}{c} & llqq \\ & vvqq \end{array} \right\} X \rightarrow WZ, ZZ \text{ final states}$

- lvqq } X → WZ, WW final states
 qqqq } X → WZ, WW, ZZ final states

Similar Object Reconstruction

- Electrons
 - Veto: $p_T > 7$ GeV, loose ID, isolation requirements, $|\eta| < 2.47$
 - Analysis: $p_T > 25$ GeV, tighter ID + isolation, exclude 1.37 < $|\eta| < 1.52$
- Muons
 - **Veto:** $p_T > 7$ GeV, loose ID, isolation requirements, $|\eta| < 2.7$
 - Analysis: $p_T > 25$ GeV, tighter ID + isolation, $|\eta| < 2.5$
- **E**_{T,miss}
 - Calo-based w/ tracker soft term
- Jets:

H. AbouZeid [UCSC]

May 2nd, 2016

- $R = 0.4 (/0.2) \rightarrow b$ -tagging (track-jet)
- R = 1.0, Trimmed + *R2D2* tagged \rightarrow V-tagging (\rightarrow next slide)

Leptons High acceptance for veto High purity for **signal** definition

Boosted Boson Tagging (/1)

Why large-R jets?

- Higher Higgs Mass \rightarrow larger boost to W $\rightarrow \Delta R$ of decay products gets smaller
- Back of the envelope calculation indicates that R=0.4 jets will begin to merge with resonant masses >~ 700 GeV
- If only looking at dijets to reconstruct V, we lose efficiency as mass increases

Boosted Boson Tagging (/2)

Use "R2D2" algo to tag our hadronic W/Z Jets

- Start with anti- k_{τ} , R = 1.0 jet
- Trimming: f_{cut} = 5%, R = 0.2 (k_{τ} algorithm)
- D2 Variable: "loose" working point
 - 50% efficiency \rightarrow 40-50x bkg rejection
- W/Z differentiated by mass window cut + D2 cut
 - **Mass window:** $|m_j m_v| < 15 \text{ GeV}, m_j > 50 \text{ GeV}$
 - **D2:** Maximizes separation between two prong and one prong decays

Fully Hadronic: qqqq

Trigger

- Large-R jet trigger (p_{τ} > 360 GeV)

Selection (jets):

- $N_{trk} > 30 \text{ GeV} (p_T > 0.5 \text{ GeV}, ghost associated})$
- 2 high p_{τ} "R2D2" boson-tagged jets
- $-p_{\tau}$ (leading-jet) > 450 GeV
- Large mass, small angular separation, p_T
 balance

Background: MJ background with analytic function

- Validated in orthogonal validation region
- Final ML fit only to signal region

Limited search range (1200 < m_x < 2500)

- High MJ backgrounds at low mass

Final discriminant: m_{JJ}

3 Signal regions: WW, ZZ, WZ (determined by boson-tagging)

Selection	Data	HVT W' simulation
$m_{JJ} > 1000 { m ~GeV}$	972069	21.5 ± 0.1
Topological selections	285474	15.4 ± 0.1
Boson tagging	128	3.09 ± 0.05

Semi-leptonic: vvqq

Trigger

– E_{T,miss} (> 80 GeV, calo-only)

Selection

- E_{T,miss} > 250 GeV
- Charged lepton veto
- ρ_τ(J) > 200 GeV
- $\Delta \varphi(E_{T,miss}, J) > 0.6$

Final discriminating variable:

- Transverse mass, m_T $m_T = \sqrt{(E_{T,J} + E_T^{miss})^2 - (\vec{p}_{T,J} + \vec{E}_T^{miss})^2}$

Background

- ttbar, Z+jets (dominant)
 - MC with data-driven normalization

Two Signal regions: WZ, ZZ (Determined by boson tagging)

H. AbouZeid [UCSC] May 2nd, 2016

Semi-leptonic: *lvqq*

Trigger

- single-lepton (e, μ)
- Selection (Summary)
 - b-jet veto
 - 1 lepton + 1 boson-tagged jet + E_{T,miss} > 100 GeV
 - $p_{\tau}(V) > 200 \text{ GeV}$ (both hadronic and leptonic)
 - $p_{T}(V) > 0.4*m_{lvJ}$

Background

- ttbar, W+jets (dominant)
 - Shape from MC, data-driven normalization
- Diboson/Z+jets
 - MC (shape + normalization)

Final discriminant

- Reconstructed mass: m_{lvJ}
 - p_z(v) analytically solved for by constraining W to be on-shell

Two Signal Regions: WZ, WW

Semi-leptonic: *llqq*

Trigger

- Single-lepton (e,μ)

Selection

- 2 same flavor opposite sign leptons
- 1 large-R jet (p_T>200 GeV), Z-tagged
- $p_{\tau}(V) > 0.4*m(llJ)$
- Veto on additional leptons

Final Discriminating variable:

Reconstructed mass: m_{ll}

Backgrounds:

- V + jets (dominant)
 - MC with data-driven normalization (extrapolated from m(J) sidebands)

Two signal regions: WZ, ZZ (separated by boson tagging)

S

$H/Scalar \rightarrow VV [NWA]$

Limits set for:

- NWA resonance (shown here)
- Γ/m = 5, 10, 15% (backup)

Stay tuned for further results in these channels!

ATLAS-CONF-2015-068 ATLAS-CONF-2015-071 ATLAS-CONF-2015-075 ATLAS-CONF-2015-073

W' → WZ [limits]

H. AbouZeid [UCSC] May 2nd, 2016 V'

Z' → WW [limits]

ATLAS-CONF-2015-068 ATLAS-CONF-2015-071 ATLAS-CONF-2015-075 ATLAS-CONF-2015-073

G^{*} → VV [limits]

May 2nd, 2016

C

$H \rightarrow ZZ \rightarrow llqq$ (A glimpse of the future)

Combination (+ Model Dependencies)

Preliminary Superposition (Boosted)

Stay tuned for further results in these channels!

Here: Need relative X → WW/WZ BRs Note: Limits down to 700 GeV (excl. vvqq/qqqq)

$H \rightarrow WW \rightarrow lvlv$

H. AbouZeid [UCSC] May 2nd, 2016 **Combination of lvlv + lvqq**

ggF Production Only!

NWA: *Narrow* width approximation (Γ = 4.07 MeV) **LWA:** *Large* width approximation

Adding lvlv adds ~ 10% to sensitivity at ~700 GeV

S

Model Dependents/Dependence

For scalar searches: Γ/m = 15% is as wide as we can go w/o considering interference

Conclusion(s)

No sign of new physics...yet!

Sensitivity increases through

- More data
- Combinations among channels
- Analysis optimizations

Run-II continues...

- Already getting first physics collisions
- ~ 10 fb⁻¹ for summer conferences (exp.)

Thank-you!

Leptonic Search Channels (Lower Mass searches)

 $H \rightarrow ZZ \rightarrow 4l(/1)$

Selection/Strategy based on the $h(125) \rightarrow 4l$ analysis

S

$H \rightarrow ZZ \rightarrow llvv$

$H \rightarrow ZZ \rightarrow 4l$ (Back)

- Other results: $\gamma\gamma/bb + E_{T,miss}$

Two models considered:

- Vector mediator model

for simplicity

 $m_x = 1 \text{ GeV}$

Additional backgrounds from: **ZH → ll + lvlv** and **ZH → ll + llvv**

Fit done on missing transverse energy for 4l events in mass window: **110 < m_{4l} < 140 GeV**

D2 [Back]

 D_2 ¹ is a jet substructure variable optimised to discriminate between jets initiated by 1 or 2 hard (LO) objects. Unlike similar variables (such as n-subjettiness) It does not require any reclustering into smaller subjets, instead it uses a ratio of a jet's energy correlation functions (ECFs) which describe the angular distribution of energy within a jet.

$$D_2^{\beta} = rac{\mathsf{ECF}(3,\beta) \times \mathsf{ECF}(1,\beta)^3}{\mathsf{ECF}(2,\beta)^3}$$

$$\mathsf{ECF}(N,\beta) = \sum_{i_1 < i_2 < \ldots < i_N \in J} \left(\prod_{a=1}^N p_{T,i_a} \right) \left(\prod_{b=1}^{N-1} \prod_{c=b+1}^N \Delta R_{i_b i_c} \right)^{\beta}$$

For a jet containing N hard subjet, $ECF(\beta, N + 1) \ll ECF(\beta, N)$ so for a two-prong jet (such as those from a vector boson) D_2 will be small.

¹See Power Counting to Better Jet Observables, A. Larkoski et. al., 10.1007/JHEP12(2014)009

VV Interference (ww @ 8 TeV shown here)

Crucial to take interference into account for broad resonances→ modifies both effective lineshape and crosssection

SM continuum process $pp \rightarrow WW$ will interference quantum mechanically diagrams with the Higgs processes $pp \rightarrow H \rightarrow WW$

Break-up components of invariant-mass WW spectrum as

- Signal only (S)
- Background only (B)
- Signal + Background (SBI) \rightarrow Includes interference
- We are interested in SI as our signal

MC signal generators do not take I into account \rightarrow must reweight signal to take into account interference

H. AbouZeid [UCSC] May 2nd, 2016

Statistical Treatment (example)

Perform *simultaneous fit* to mass spectra across SR and CRs (→ Top CR, W CR for lvJ channel)

- Simultaneous fit applies common normalization factors across CRs and SRs
 - Strength parameters for the signal, Top, and W + jet backgrounds (shared strength common across all regions)

Binning and fit range of final m_{lvJ} spectrum is varied for each mass hypothesis

H. AbouZeid [UCSC] May 2nd, 2016

Fully Hadronic: qqqq

H. AbouZeid [UCSC] May 2nd, 2016 C

Semi-leptonic: lvqq

H. AbouZeid [UCSC] May 2nd, 2016 S

Semi-leptonic: lvqq

Semi-leptonic: vvqq

Semi-leptonic: vvqq

S

Semi-leptonic: *llqq*

May 2nd, 2016

S

ATLAS-CONF-2015-068 ATLAS-CONF-2015-071 ATLAS-CONF-2015-075

H/Scalar → VV [LWA]

Limits set for:

- NWA resonance (shown previous)
- Γ/m = 5, 10, 15% (shown here)

H. AbouZeid [UCSC] May 2nd, 2016