Z + MET in supersymmetry

Ahmed Ismail

ANL/UIC

New Physics Interpretations at the LHC Argonne National Laboratory

May 4, 2016

Run 1 ATLAS search

Opposite sign same flavor leptons at $m_z \pm 10$ GeV

10.6 \pm 3.2 events expected, 29 observed; excess in e and μ

Run 1 CMS search

On the other hand, CMS saw agreement with the SM in their search for leptonic Z + jets + MET

Differences from ATLAS

MET > 100 GeV (compare to 225) No $H_{\scriptscriptstyle T}$ cut (compare to 600 GeV)

E _T miss (GeV)	100-200	200-300	>300
DY background	336 ± 89	28.6 ± 8.6	7.7 ± 3.6
FS background	868 ± 57	45.9 ± 7.3	5.1 ± 2.3
Total background	1204 ± 106	74.5 ± 11.3	12.8 ± 4.3
Data	1187	65	7
GMSB signal yields			
$m_{\tilde{g}} = 900, m_{\tilde{\chi}_1^0} = 150$	22.1 ± 0.4	11.1 ± 0.3	7.2 ± 0.2
$m_{\widetilde{g}} = 1100, m_{\widetilde{\chi}_1^0} = 800$	1.1 ± 0.04	1.6 ± 0.05	7.6 ± 0.1

Run 2 ATLAS search

 2.2σ excess with 10.3 ± 2.3 events expected, 21 observed

Same signal region as 8 TeV analysis

Run 2 CMS search

Agreement with the SM, now using ATLAS-like signal region (among others)

Differences in background estimations, object cuts?

See Tuesday talks by R. Castello, T. Holmes

General strategy

Strong

Electroweak 1

Electroweak 2

Strongly produced particle decaying through cascade of electroweak states

Need to suppress decay of colored parent to lightest new particle

e.g. very weakly interacting lightest particle, compressed spectrum, composition of states

Some theory interpretations

Gauge mediation Allanach, Raklev, Kvellestad Barenboim et al.

. . .

NMSSM with decay to singlino Cao et al. Ellwanger

. . .

Mixed stops Collins, Dror, Farina

> Non-SUSY Dobrescu Vignaroli

Tension between results?

ATLAS vs. CMS at 8 TeV: different kinematic regions, can be evaded

ATLAS vs. CMS at 13 TeV: more difficult without better understanding of background and/or statistical fluctuations, given nearly identical signal regions

8 TeV vs. 13 TeV: depends on parton luminosity ratios, i.e. mass/initial state

Tension between results?

For quark-initiated production and/or lighter particles, slower scaling with CM energy helps

Lu, Shirai, Terada 1601.05777

Fitting with gluino cascades

Allanach, Raklev, Kvellestad, 1504.02752 see also Barenboim et al., 1503.04184

Tension between parameter space fitting ATLAS excess and CMS result

ATLAS jets + MET, CMS multileptons make it extremely difficult for the GMSB simplified model

Fitting with gluino cascades

Cao et al., 1504.07869

see also Ellwanger, 1504.02244

Reduce MET by making lightest state massive first neutralino, rather than gravitino

Possible in NMSSM scenarios, with gluino → bino → singlino

Squark cascade in MSSM

Higgsino multiplet includes two neutral and one charged state, so W decays also occur

Could also have RH squark → bino → wino

Squark cascade in MSSM

Allow non-degenerate masses for squarks in different SU(2)_L multiplets, easing limits from jets + MET at cost of lower overall cross section

Mahbubani et al., 1212.3328

Can fit Z + MET excess well for 4 light flavor squarks, e.g. assume RH squarks decoupled

Squark cascade in MSSM

Before considering other constraints, can accommodate ~18 event excess at Run 1 in ATLAS Z + MET search region

Simplified model grid generated around point in phenomenological MSSM parameter scan

Gluino at 2.8 TeV, rest of spectrum decoupled

CMS 8 TeV on-Z search

Correlation between ATLAS and CMS Z + jets + MET search regions, but points predicting many Z events in ATLAS are still away from the current CMS limit

Color code indicates bino-Higgsino splitting

Modest splittings ~100-200 GeV preferred for both sufficient Z events and compatibility with jets + MET

Jets + MET

Run 1 search limits squark cascade scenario

Still possible to achieve on-Z excess in squark cascade model while evading other constraints

13 TeV Z + MET search

At Run 2, can get much of ATLAS ~11 event excess with region favored by 8

TeV results

Mild tension with CMS remains to be clarified

Jets + MET likely to test scenario at 13 TeV, but current bounds are weaker than at 8 TeV given low masses

Further thoughts on distributions

Statistics are low, and most look background-like

M. Schreyer, CERN-THESIS-2015-149

If excess persists, use kinematics, b-tags, ... to discriminate between explanations

Summary

With mixed 13 TeV results from ATLAS and CMS, the status of the Z + jets + MET excess seen by ATLAS at Run 1 remains unclear

Explanations involving lighter particles tend to do better in resolving the tension, e.g. squarks decaying through electroweak cascade

For now we wait for more data....

Neutralino branching ratios

Models predicting 5 or more events in ATLAS Z + jets + MET search region only

W often produced in bino → higgsino decay

However, single lepton + jets + MET search is generally compatible with spectra accommodating excess in Z + MET signal region

Other constraints

W decay can produce single lepton, but bounds from one lepton ATLAS search are loose and signal strengths in one lepton and Z + jets + MET search regions appear uncorrelated