Future Science Opportunities Enabled by X-ray Free Electron Lasers

Bill Schlotter

Linac Coherent Light Source, SLAC

Thursday, April 7, 2015

Outline

- X-ray Science and Methods
- Soft and Hard X-ray Free Electron Lasers
- A Tour of LCLS with some science examples
 - Soft X-ray Instrument for Materials (CXI)
 - Coherent X-ray Imaging (CXI)
- The LCLS-II upgrade
- Further Reading

How do we see the nanoworld?

Nature Technology Head of a $10^{-3} \text{ m}_{-1} \text{ mm}$ Flea pin ~ 1mm Human hair The Microworld Micro gears ~30 µm wide 10 -100 µm -100 μm diameter DVD track – 10 µm $10^{-6} \text{ m} + 1 \mu \text{ m}$ Red blood cells 10 µm & white cell ~ 5µm 1 µm Electrodes The Nanoworld Virus ~ 200 nm connected with -100 nm nanotubes Carbon nanotube — 10 nm DNA helix ~ 2nm diameter ~3 nm width 10⁻⁹ m <mark>| 1</mark> n m Water -0.1 nm Atomic corral Atom molecule ~ 14 nm diameter

SLAC

Relevant Time and Length Scales

SLAC

1 light picosecond = 0.3 mm

Jo Stohr, LCLS, SLAC

Capability	Technique
Access to atomic length scales	Scattering
Capture texture exactly and access bulk	Imaging
Element and chemical sensitivity	Spectroscopy

SLAC

X-ray Absorption Spectroscopy

Resonant Coherent Scattering

SLAC

Fourier Transform Holography

X-ray Scattering & Diffraction

Wide Angle Scattering Probes Short Length Scales

Crystallography Probe Atomic Structure When Long Range Order is Present

SLAC

Jens Als-Nielsen, Elements of Modern X-ray Physics, Wiley, (2001)

Why do we use X-ray Free Electron Lasers?

X-rays provide element specificity and atomic resolution...

Ultrashort X-ray Pulses

- Study ultrafast (femtosecond) dynamics
- Out-run damage to samples

High Energy Per Pulse

- Enables single shot imaging
- Generates unprecedented electric fields

Coherent X-ray Pulses

 Far field scattering methods improved spatial resolution

	Soft X-rays	Hard X-rays
Photon Energy Range	250eV - 2 keV	4 keV – 25 keV
e-Beam Energy to produce photons*	3-5 GeV	8-17GeV
FEL gain length**	~2m	~5m
Transmission through 100 mm Air(1 bar)	10 ⁻³³	89%
Transmission through 100 nm of Iron	34%	97%
Experimental Strength	Electronic Structure	Atomic Structure

SL AC

*The photon energy is a function of both the ebeam energy and the undulator period and gap. The values here represent optimized ** Around 20 gain lengths needed to reach saturation

Operating VUV and X-ray FELs Worldwide

Location	Name	Linac type	E energy (GeV)	Photon energy (keV)	Rep. rate (Hz)	Start ops.
Germany	FLASH FLASH-II	SC SC	1.2	0.03-0.3	$(1-500) imes 10^a$	2005 2015
	XFEL	SC	17.5	3-25 0.2-3	$(1-2800)\times 10^{b}$	2017
Italy	FERMI-FEL1 FERMI-FEL2	NC	1.5	0.01-0.06 0.06-0.3	10–50	2012 2014
Japan	SACLA	NC	8	4-15	30-60	2011
Korea	PAL-XFEL	NC	10 3	1–20 0.3–1	60	2016
Switzerland	SwissFEL	NC	5.8 3	2–12 0.2–2	100	2017
	LCLS	NC	16	0.25-11	120	2009
USA	LCLS-II LCLS-II	NC SC	16 4	1-25 0.2-5	120 10 ⁶	2020 2020

^aPulsed mode operation at 10 Hz, with each macropulse providing up to 500 bunches.

^bPulsed mode operation at 10 Hz, with each macropulse providing up to 2800 bunches.

VUV below 0.2 keV Soft X-ray: 0.2-2.0 keV Hard X-ray: 4-25keV

How does LCLS work?

- Users submit proposals twice a year
- Beamtime proposals are evaluated via peer review
- ~20% of proposals are granted beamtime
- Successful proposals are awarded an average 60 hours of LCLS beamtime
- The average user group is ~15 people

Run 1, the first operating period at LCLS, was October-December 2009

^{*} The Run 10 operating period is scheduled October 2014-March 2015.

^{***} October 2009-October 2013 total number of scientific researchers engaged in approved research at LCLS.

A tour of the LCLS

LCLS from Above

132 meters of FEL Undulator

Self Amplified Spontaneous Emission

SLAC

LCLS Experimental Instruments

- AMO & SXR: Soft X-ray
- XPP, XCS, MFX,CXI and MEC: Hard X-rays

Soft X-ray Instrument for Material Science

- Dynamics in strongly correlated electron systems
- Chemical reactivity on both surfaces and in liquids

SXR: Soft X-ray Materials Research

The SXR Instrument at LCLS

Soft X-rays (250-2000eV)

- Pulse Energy 10¹² photons/pulse
- Varied Line Spacing Plane Grating Mono
 - Ε/ΔΕ ~3000
- KB Focusing
 - 10x10µm is nominal focus spot size.
 - Bendable KB allows for spot sizes up to ~1mm
- Optical Pump Laser (Synchronizable with x-rays to ~280 fs)

Spectrometer + Monochromator

0.5

770

775

780

photon energy (eV)

785

790

P. Heimann, et al. Rev. Sci. Instrum. 82, 093104 (2011)

LCLS

Commissioned SXR End Stations

Resonant Coherent Imaging Station

Coherent scattering from fixed target and structured samples

Surface Science End Station

Ultrafast surface chemistry

SL AG

Soft X-ray Scattering

Resonant and non-resonant diffraction

Liquid Jet End Station

Photochemistry in solution

Watching surface bonds break in real-time at LCLS:

SLAC

Transient weakly bound state observed in desorption process

What can be done with X-ray Emission

- Resonant Inelastic X-ray Scattering (RIXS)
 - Maps occupied density of states
- To study
 - Chemical reactivity on surfaces and in solution
 - Electronic excitations in correlated electron systems

L. Ament, et al. Rev. Mod. Phys. Vol. 83 (2) April June 2011

SLAC

Example: X-ray Raman Studies of Molecular Dynamics

- Soft X-ray RIXS maps molecular orbitals & their evolution
- Element-specific: transitionmetals & ligands
- Local chemical structure & bonding
- Current limitations:
 - Sensitivity observe only large molecular changes, in model complexes, at high concentrations
 - Limited time information average X-ray flux (rep rate)

Ultrafast X-ray Raman Spectroscopy (resonant inelastic X-ray scattering – RIXS)

705 707 709 711 713 715 Incident energy (eV)

SLAC

Resonant Soft X-ray Scattering

- RSXS Resonant Soft X-ray Scattering
- Resonant Soft X-ray Diffraction
- Strongly correlated systems

SLAC

Fast CCD In-vacuum diffractometer Cryo sample environment

Probing Long Range Order with Soft X-rays

Charge Ordering Optical SXR @ LCLS **Charge Ordering** Pump Pulse (Electronic Lattice) Probe Pulse (Electronic Lattice) ~~~~~ ~~~~~ **Delay Time** Delay Time Charge Ordering Δt $\Delta t \sim \infty$ melts Laser induced phase Correlate: transition in magnetite charge-order insulating and ferromagnetic metallic phases 1.4 mJ cm CT manne La, Ca, MnO, phonon 350 5.8 300 PI 50 meV 300 meV 1.5 eV 250 CMR 8 2.3 mJ cm⁻² 8 £ 200 x=1/8 7/8 00 TH2, Mid-IR, Optical pulse 150 · Oct FM 4. В 100 4.2 mJ cm⁻² AFI 50 50 meV 300 meV 1.5 eV 0.4 0.2 0.6 0.8 Cax -2 8 0 2 Delay (ps) Bill Schlotter wschlott@slac.stanford.edu CLIC April 7, 2016 Wei-Sheng Lee

SLAC

Resonant Coherent Imaging

- RCI Resonant Coherent Imaging
- Coherent Scattering from fixed target and structured samples
- Ultrafast magnetic phenomena

In-vacuum sample manipulation

SLAC

- 2k x 2k CCD
- In-situ magnetic field

Femtosecond single-shot imaging of ferromagnetic nanostructures

SLAC

80 fs single-shot Hologram with spatial multiplexing

Bill Schlotter wschlott@slac.stanford.edu CLIC April 7, 2016

T. Wang, et al, *PRL* 108, 267403 (2012)

SLAC

Optical control of nanoscale spin order in Fe₆₆Co₁₀Gd₂₄ SLAC

Real Space

Coherent X-ray Imaging

CXI: Coherent X-ray Imaging

First Light: December 2010 Enerav : 4 keV-10 keV

Science Program

- Imaging of Submicron Particles
 - Atomic Structure Determination: Protein Nanocrystals
 - Biological Nanoparticles Beyond the Damage Limit
 - Amorphous Nanoparticles

CXI Instrumentation Description

Energy : 4 keV-10 keV

Nano-crystalography at LCLS

High resolution serial femtosecond crystallography using liquid jets can produce damage-free structures

SLAC

Bill Schlotter wschlott@slac.stanford.edu CLIC April 7, 2016

In-vivo grown crystal of a glyco-protein

Redecke *et al*, Science **339**, 6116 (2012) Boutet *et al*. Science, **337** (6092) 362 (2012)
Imaging of the Mimi Virus

- Mimi Virus is the largest known virus (0.5 um)
- It is too big for cryo-electron microscopy
- It does not crystalize because of dense outer fibrils

SLAC

M. Seibert, et al, *Nature* 470, p78 (2011)

Mimi Virus

SLAC

Energy: 1.8 keV **Photons per pulse**: 1.2x10¹² photons/pulse **Focus at sample**: 10 μm **Nominal pulse durations**: 70 fs Demonstrates that short XFEL pulses can outrun sample damage

M. Seibert, et al, *Nature* 470, p78 (2011)

LCLS-II

LCLS-II Upgrade Use 1st km of SLAC linac tunnel for Super Conducting linac

Accelerator	Superconducting linac: 4 GeV
Undulators in existing LCLS-I Tunnel	New variable gap (north) New variable gap (south), replaces existing fixed-gap und.
Instruments	Re-purpose existing instruments (instrument and detector upgrades needed to fully exploit)

SLAC

-SLAC

	LCLS-I	New for LCLS- II
Accelerator technology	SLAC copper linac	New superconducting
X-ray pulses per second	Up to 120	Up to 1 million
Time to produce 10 billion X-ray pulses	4 years	2 hours

LCLS-II Operating Energy Range

LCLS-II: A Revolution in X-ray Science

SLAC

Bill Schlotter wschlott@slac.stanford.edu CLIC April 7, 2016

- LCLS-II upgrade will deliver
 - > High repetition rate \rightarrow 10⁴ fold increase in data collection

SI AG

- \succ High stability \rightarrow high throughput measurements
- > Second source capable of multiplexing \rightarrow doubles access
- New Scientific Opportunities at LCLS-II
 - Photo and heterogeneous catalysis
 - Follow molecular transformations & bond formation
 - Revealing interacting degrees of freedom in correlated electron systems

LCLS-II Science Opportunities Document

https://portal.slac.stanford.edu/sites/lcls_public/Documents/LCLS-IIScienceOpportunities_final.pdf

Bill Schlotter wschlott@slac.stanford.edu CLIC April 7, 2016

Contributors P. Abbamonte¹⁰ F. Abid-Podersen¹⁰ P. Adams¹⁷ M. Ahmed¹⁷ F. Abert¹⁸ R. Aknaso Morf¹³ P. Arffrerad¹⁷ A. Aquiha¹⁷ M. Armatrong¹⁰ J. Arthat¹⁷ J. Bergar² A. Barty¹⁶ U. Bergmann¹⁰ N. Berrah¹⁶ G. Biajl¹¹ H. Bibhn¹⁷ C. Bohne¹⁷ C. Dossodt¹⁷ S. Borate¹⁷ G. Browen^{15,17} P. Backobaum^{15,17} M. Cargnelo¹⁵ G. Coffn¹⁷ A. CavaBer^{15,55,15} V. Cherrezov¹⁶ W. Chir² Y. Chuang¹¹ D. Cocco¹⁵ R. Coffee¹³ G. Collan¹⁶ A. Cordones-Hahn¹⁷ J. Cryan¹⁵ G. Dakovski¹⁰ M. Damna¹⁶ H. Dum¹⁷ T. Egarn¹⁷ D. Devereux^{15,19} Y. Dieg¹⁸ S. Doriach¹⁷ R. Dörner¹⁶ M. Damne¹⁸ H. Dum¹⁷ T. Egarn¹⁷ D. Everever¹⁵ Y. Dieg¹⁸ S. Doriach¹⁷ R. Dörner¹⁶ M. Damne¹⁸ H. Dum¹⁷ T. Egarn¹⁷ D. Everever¹⁵ Y. Dieg¹⁸ S. Doriach¹⁷ R. Dörner¹⁶ M. Damne¹⁸ H. Dum¹⁷ T. Egarn¹⁷ D. Everever¹⁵ Y. Dieg¹⁸ S. Doriach¹⁷ R. Dörner¹⁶ M. Damne¹⁸ H. Dum¹⁷ T. Egarn¹⁷ D. Everever¹⁵ Y. Fouca²⁷ M. Frank¹⁷ J. Franse¹⁷ H. Frail¹⁷ D. Fritz² P. Froker¹⁷ I. Fettecher² L. Fouca²⁷ M. Frank¹⁷ J. Franse¹⁷ H. Frail¹⁸ S. Ghinin¹⁷⁰ A. Giasson¹⁸ S. Ginere¹⁷ T. Gorbover²⁷ A. Genz¹⁷ M. Genzh¹⁷ J. Gous¹⁷ J. Hajd¹⁴⁰ S. Hasson¹⁷ P. Har¹⁸ M. Hashimoto¹⁵ J. Hasting¹⁵ D. Haxton¹⁷ P. Heiman¹⁸ T. Heinz^{23,15} A. Hexeme¹⁷ J. Hill¹⁷ F. Himpsel⁴⁸ P. Ho¹ B. Hogge² Z. Huang¹⁷ M. Hanter² G. Hurs² N. Huse^{22,15} Z. Huassain¹⁷ M. Likeben¹⁵ C. Jacobene¹⁷ C. Klewer¹³ J. Kan¹¹² S. Kreval¹ J. Kin¹¹² H. Kim¹⁸ P. Kriehmann¹⁸ R. Krisin² S. Krevloor¹⁷ C. Klewer¹³ J. Kantek¹⁶ G. Kovicesor¹⁵ A. Lanam^{17,16} J. Laku^{18,17} H. Lee¹⁷ V. Lee^{27,17} J. Linda^{18,17} A. Lindenberg^{18,17} Z. Lia¹⁸ D. La¹⁹ U. Lundstreen¹¹ A. MacDowel¹⁷ W. Mao^{17,17} J. Marangos¹⁸ G. Materus¹⁸ I. Mathie^{17,18} M. McCurdy¹¹⁴ G. McDormon^{17,16} C. KGluffle¹⁷ H. Kokleen¹³ S. Novaku¹⁸ D. Nuunatk^{17,16} R. Novate¹⁸ A. MacDowel¹⁷ W. Mao^{17,17} J. Marangos¹⁸ G. Materus¹⁷ R. Mathie^{19,18} M. Mella^{18,1} A. Cov^{18,1}

Argonne National Laboratory Arizona State U. Baylar College Medicine Brockbaven National Laboratory Brown U. Center for Free Electron Laser Science DESY Turopean XFEL **Yorschungszentrum** Milch Fritz-Haber-Institut - MPG General Atomics ¹¹Goetheburg U. Helmholtz-Zentrum Berlin "Innerial College London Institut für Komphysik, Goethe U. Frankfurt 16 Kansas State U Lawrence Berkeley National Laboratory "Lawrence Livermore National Laboratory "Los Alarios National Laboratory "Lund U.

"Max Planck Inst. for Medical Research Michigan State U. ^DMIT 16 MPI Physics Complex Systems Dresden ¹⁹MPI Structural Dynamics ³National Institute Standards and Tech. National Institutes Meabh ¹⁸Paul Scherver Institute "Photon Factory, Japan Radboud U. Rice U. ¹⁰RIKEN Center for Advanced Photonics Sanda National Laboratorica "SIMIT, CAS, Shanghai Tech Unix. "SLAC National Accelerator Laboratory ¹⁰Sogang U. Standard U. "Stockholm U. *Temple U. "U. California, Berkeley

⁴¹U. California, Davis ⁴¹U. California, Irvine ⁴⁹U. California, Los Angeles "U. California, Sat Diego "U. California, San Francisco "U. Connecticut "U. Massachasetts Amherst "U. Michigan "U. Aberta ¹⁹U. Arinna 14U. Duisburg-Esseni ⁵⁰U. Hamburg ¹³U. Elizoia 16U. Nebracka Lincole 10 U. Oxford ⁵⁰U. Southern California U. Tenheister ¹⁴U. Wintersin-Madison

SLAC

- ¹⁹U. Wisconsin-Milwaukee
- "Uppsals U.

*corresponding author

LCLS Strategic Facility Document (July 2015)

 LCLS Facility generated a strategic development plan to outline an approach to enable LCLS-II scientific objectives

SLAC

The plan was released in July 2015 as a draft to solicit feedback.

Review of Modern Physics: LCLS

REVIEWS OF MODERN PHYSICS, VOLUME 88, JANUARY-MARCH 2016

Linac Coherent Light Source: The first five years

Christoph Bostedt, Sébastien Boutet, David M. Fritz, Zhirong Huang, Hae Ja Lee, Henrik T. Lemke,¹ Aymeric Robert, William F. Schlotter, Joshua J. Turner, and Garth J. Williams¹

SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menio Park, California 94025, USA

(published 9 March 2016)

A new scientific frontier opened in 2009 with the start of operations of the world's first x-ng freeelectron isser (PEL), the Lina: Coherent Light Scource (LCLS), at SLAC National Accelerator Laboratory. LCLS provides fermosecond pulses of x trys (270 eV to 11.2 keV) with very high peak brightmes to accent new domains of silrafast x-ng science. This article present the fundamental PEL physics and outlines the LCLS source characteristics along with the experimental challenges, strategies, and instrumentation that accompany this novel type of x-ray source. The main part of the article neviews the scientific achievements since the inception of LCLS in the the primary areas it serves: atomic, molecular, and optical physics; condensed matter physics; matter in externe conditions; chemistry and soft matter, and biology.

DOE 10.1103/RevModPhys.88.015007

Introduction 1. K-try instruments 13 A. Brief hintery of x-try FELs 2 s. AMO 13 B. X-ray FELs as user facilities 3 b. SXR 14 C. LCLS Science case 3 d. XCS 14 The LCLS X-ray FEL boxics 4 e. CXI 14 I. The LCLS X-ray FEL boxics of operation 4 e. CXI 14 I. SASE FEL boxics of operation 4 f. MBIC 14 I. SASE FEL boxics of operation 4 Z. Diagnostics 15
annomianin 2 a. AMO 13 A. Brief history of x-cay FELs 2 b. SXR 14 B. X-ray FEL as user facilities 3 c. XIP 14 C. LCLS science case 3 d. XCG 14 T. The LCLS X-ray FEL bource 4 c. CXI 14 A. X-ray FEL physics and LCLS performance 4 c. CXI 14 1. SASE FEL basics of operation 4 2. Disgnostics 15
A. Brief milling of K-eq PELS 2 b. SXR 14 B. X-ray PEL as user facilities 3 c. XIPP 14 C. LCLS science case 3 d. XCS 14 I. The LCLS X-ray PEL Source 4 e. CXI 14 A. X-ray PEL physics and LCLS performance 4 e. CXI 14 1. SASE PEL busics of operation 4 2. Diagnostics 15
B. A. chy Fill, as user facilities 5 c. XDP 14 C. LCLS science case 5 d. XCS 14 I. The LCLS X-ray Fill. Source 4 e. CXI 14 A. X-ray Fill. physics and LCLS performance 4 e. CXI 14 1. SASE Fill. basics of operation 4 2. Diagnostics 14
C. LCJS science case 3 d. XCS 14 1. The LCLS X-ray FBL Source 4 e. CXI 14 A. X-ray FBL Source 4 f. MBC 14 1. SASE FEL Invics of operation 4 f. MBC 14 2. Source methods for a set WB 4 2. Diagnostics 15
The LCLS X-ray PIL Source 4 e. CXI 14 X-ray PIL physics and LCLS performance 4 f. MBIC 14 1. SASE FEL basics of operation 4 c. Diggeorities 15
A. X-ray FEL physics and LCLS performance 4 t. MIIC 14 1. SASE FEL basics of operation 4 2. Diagnostics 15
1. SASE FEL basics of operation 4 2. Diagnostics 15
9 Accolumns sharing challenges of an a my EUI 4
a. Accession physics chaosinges of an x-ray PEA. 3 a. Pulae energy diamontics 14.
a. High-brightness electron beams 6 b. Spectral diametrics 15
b. FEL undulators 6 c. Timing diagonation 15
3. LCLS first lasing and performance 7 d X-my detection
B. LCLS developments and improvements over five years 7 IV Science with UT S
1. Ultrashort x-ray pulse generation 8 A Avania metabolic and entired sharing 16
2. Self-seeding 8 1. Use interacting and optional physical 16
3. Wide bandwidth mode 9 1. High-instruction in control in the interview of the second
4. Two-color FEL 9 b Deable on highly ansate A rays in access 10
5. X-ray pulse length characterization 0 b. Double core-hole states and approximents to
II. Experimental Challenary, Strategies, and Instrumentation 10 spectroscopy 18
A Challeners of an x-ray FEL source 10 C. X-ray induced transparency 18
1. Restricted access to beams 10 d. Extended systems and complex
2 Score Octations 10 environments 29
3. Beam cohempose 10 2. Ultratest and time-resolved studies 19
4. Durnante 11 a. Prepared states 19
B. Examinantial concentration atheneous here and the same BUL at the b. Time-resolved x-my spectroscopy 20
Difference of the systems 21
2. Multicolor entere action of 11 3. Multicolor and nonlinear experiments 21
 Newsness relevances A. Sidebands and streaking A. Sidebands
5. Time-rescoved pump-prote dynamics 12 b. X-ray and optical wave mixing 22
 Coherent scattering 12 C. Anomalous nonlinear x-ray Compton
scattering 23
¹ Current address: Arauna National Laboratory (200 South Case d. Stimulated emission processes 23
A New possibilities from imaging 24
a. New insights from coincident imaging and
ing Anomony, were constructed of the second se
Controlled molecule imaging experiments 25
c. Imaging quantum phenomena on the
Personana. International International Physics (2000) nationale 25
Current address: browners: browners: browners; roy box boxs; 5. Perspectives 26

- Recently published review article
- Provides an excellent

 overview of the
 accelerator,
 instrumentation and
 scientific developments of
 the first five years

SLAC

Rev. Mod. Phys., Vol. 88, No. 1, January–March 2016)

Conclusions

-SLAC

- X-ray Free Electron Lasers a well suited to study nanoand atomic scale dynamics on ultrafast timescales
- Soft x-rays provide access to study specific elements while hard x-rays view atomic structure
- FEL Facilities serve a wide variety of scientific communities.
- The number of operating x-ray FEL facilities will double in the next three years

The Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.

END Backup Slides

How we detect x-rays at LCLS?

Single shot mode

- All experimental parameter that may change are recorded for each pulse
- Data must be sorted by the independent variable after the experiment
- Each x-ray pulse is different

Advantages of single shot mode

- Time to read out detectors
- Time to renew destroyed samples

KB Mirrors

Undulator

(420 m upstream)

Liquid Jet

Limitations to single shot data collection at 120Hz

- Limited data collection volume
 - Low repetition rate (120 Hz)
 - Only 60 hours to collect data
- Source stability
 - Energy
 - Arrival time
 - Duration
 - Wavelength & Bandwidth
- Limited Access
 - Only one x-ray source
 - One size fits all experiments

SLAC

Accumulation Data Collection

- To the extent each x-ray pulse is the same, we can accumulate the detected photons over many pulses
- But this is exactly how experiments are done at storage ring sources

 Combining the mJ, fs pulses of an FEL with the stability of a storage will revolutionize x-ray experiments.

Bill Schlotter wschlott@slac.stanf S.ed Reiche UCLA CLIC April 7, 2016

Near Experimental Hall (NEH)

Far Experimental Hall (FEH)

LCLS Instrument Backup AMO,XPP,MEC

Atomic, Molecular & Optical Physics

- Intense x-ray interactions with atoms and molecules
 - Non-linear x-ray interactions
- Ultrafast chemical dynamics of molecular gases
- Soft X-ray imaging
- Structure and evolution of clusters

AMO: Atomic, Molecular and Optical Physics

First Light: August 2009 Energy : 480eV-2keV

Scientific Scope

- Intense x-ray interactions with atoms and molecules
 - Non-linear x-ray interactions
- Ultrafast chemical dynamics of molecular gases
- Soft X-ray imaging
- Structure and evolution of clusters

Machine and Instrumentation Development

- X-ray pulse characterization
- X-ray / optical timing
- Accelerator-based x-ray/x-ray pump/probe

Bill Schlotter wschlott@slac.stanford.edu CLIC April 7, 2016

Read About First Experiments: http://wcm.aps.anl.gov/lcls/

The AMO Instrument

SLAC

- Soft X-rays (275-2000eV)
- Pulse Energy 10¹² photons/pulse
- KB Focusing
 - 1.5 x 1.5µm is minimum focus spot size.
- Optical Pump Laser (Synchronizable with x-rays to < 50 fs)

AMO Instrument: LAMP

Bill Schlotter wschlott@slac.stanford.edu CLIC April 7, 2016 Collaboration with Nora Berrah (WMU)

Inspired by CAMP

SLAC

Split & Delay Basic Design Concept:

- Two mirror device that splits the beam across the trailing edge of the first mirror
- Second mirror position and angle set to overlap beams in the interaction region

Bill Schlotter wschlott@slac.stanford.edu CLIC April 7, 2016 Collaboration with Nora Berrah (WMU) Delay range 0 – 200 fsec

SLAC

- Step size ~ fsec
- Available at all SXD beamlines

Schorb et al., Appl. Phys. Lett. (2012)

Atomic photoionization in extreme x-ray pulses

Sequential, excitation energy dependent processes: V – Valence ionization P – Core level ionization A – Auger process Ne ion tof data

SLAC

Young, et al, Nature, 466 p56 (2010)

XPP X-ray Pump Probe

XPP: X-ray Pump Probe

SLAC

- Condensed Phase Photochemistry
 - Charge Transfer Reactions
 - Photosynthetic Reactions/Photovoltaics
- Lattice Dynamics and Phase Transitions
 - Order/Disorder
 - Metal/Insulator
 - Vibrational Dynamics

First Light: July 2010 Energy : 4keV-10 keV

X-ray Pump Probe

XPP: How do the atoms in materials and chemical complexes respond to excitations?

SLAC

Imaging phonons in nanocrystals

SLAC

Clariksetoatrysoriemees344drd.556 (204p3)7, 2016

X-ray two-photon absorption at SACLA

First observation of a third order nonlinear process with hard x-rays.

SLAC

MEC

Matter in Extreme Conditions

MEC Instrument Layout in Hutch 6

Science Program

- High Pressure
- Shock phenomena
- Warm Dense Matter
- High Energy Density Matter

SLAC

MEC Instrument optics and diagnostics

Photon energy: 2keV - 10keV fundamental (~10¹² photons) up to 24keV in third harmonic (10¹⁰ photons) Pulse length : 60fs - 30fs (<10fs with penalty in photons) bandwidth : 0.3% in SASE
Matter in Extreme conditions

Matter in extreme conditions is extremely interesting state

- Solid or near solid density: Pressure typically tens GPa a few of TPa
- Heated to 1,000 K < 1,000,000 K</p>
- Inside the Earth, structure of large planet, planetary impact phenomena...
- High Energy Density Physics, Warm Dense Matter, High Pressure Physics

LCLS Instrument Backup SXR,CXI

Avoiding demagnetization during the x-ray pulse

Illumination with 20mJ/cm²:

SLAC

- Comparable energy deposited with an optical pulse will result in a reduction of magnetization (red curve)
- Front of 360 fs pulse excite the electronic systems which thermalize to the lattice within 100fs thus reducing the magnetization
- 80 fs pulses are fast enough to outrun demagnetization

After effects of heating: damage thresholds

 Sequential imaging on a single sample possible but limited to 50nm resolution

SLAC

 Irreversible damage above ~30mJ/cm²

Watching surface bonds break in real-time: Transient weakly bound state observed in desorption process

Experiment:

- An ultrafast laser pulse heats the metal surface and initiates the process of converting CO to CO_2 .
- Snapshots of the electronic states of oxygen are captured in x-ray spectra.

Nilsson Group, Surface Science End Station M. Dell'Angela, et al., Science 339 6125 (2013) M. Beye, et al., Phys. Rev. Lett. 110 186101 (2013)

Bill Schlotter wschlott@slac.stanford.edu CLIC April 7, 2016

Results:

CO enters a transient state where it is weakly bonded yet not completely desorbed.

Spectral Peak Energy vs. Delay

reaching 534.2eV which confirms that CO is not completely

SLAC

energy increases with time toward the gas phase spectra. This is constant with between CO and the

Pump-Probe Delay (ps)

CXI Primary Science Areas

- Structural Biology
 - Serial Femtosecond Crystallography
 - Laser induced Dynamics
 - Coherent Diffractive Imaging
 - Protein Crystal Screening Program
- Nanoparticle Studies and Imaging
 - Clusters
 - Aerosols
- High Field Hard X-ray Physics
 - 100 nm focus is unique capability
 - Produces the highest x-ray power density in the World
 - Non-linear x-ray studies
- Material Science
 - Nanoparticle studies and imaging
 - Laser induced phase transitions
- AMO Science with Hard X-rays

LCLS II Backup

Accelerator	Superconducting linac: 4 GeV	
Undulators in existing LCLS-I Tunnel	New variable gap (north) New variable gap (south), replaces existing fixed-gap und.	
Instruments	Re-purpose existing instruments (instrument and detector upgrades needed to fully exploit)	

SLAC

Development of Science Drivers LCLS-II Science Opportunities Workshops

Science opportunities workshops held at SLAC in February, 2015

SLAC

Workshop Registrants

Chemistry	165
Materials Physics	264
Life Sciences	149
MEC Breakouts	116
Unique Registrants	410

Chemistry: Photo and heterogeneous catalysis

Predictive understanding of catalysis

LCLS-II Science Opportunity

- Understand the fundamental processes that occur on metal surfaces during catalytic reaction conditions in order to design new, efficient, and selective catalysts
- Provide a robust structure-function relationships for materials in electronic excited states
- Understanding and predicting photon driven phenomena

Significance and Impact

- Light harvesting & charge separation are fundamental to understanding natural & artificial photo-catalytic systems
- Interfacial chemistry and charge-transfer in real time & under reactive conditions

Strengths of SRF source

High average power at high rep rate (moderate peak power)

SL AC

Chemistry: Charge migration and redistribution

Follow molecular transformations & bond formation

LCLS-II Science Opportunity

 Map electron dynamics on sub-angstrom and subfemtosecond scales and reveal coupled electronic and nuclear motion in molecules

Significance and Impact

- Charge migration initiates all charge transfer chemistry
- Dynamics on fundamental time scale have been invisible before this

t=2 fs

Strengths of SRF source

- Coherent bandwidth and pulse intensity are essential for transient impulsive electronics
- 2-color (element selectivity)
- High rep rate for rare events and coincidences

Materials Physics: Revealing interactions among degrees of freedom in high temperature SC cuprates

LCLS-II Science Opportunity

 Magnetic, lattice, and charge degrees of freedom are strongly intertwined makes it difficult to understand the mechanism of HTSC.

Significance & Impact

- Clarify interactions among different degrees of freedom in high T_c cuprates, that may provide important clues to reveal its mechanism.
- Pathway to manipulate novel phase and perhaps lead to SC with even higher T_c.

Strengths of SRF source

• Time-resolved RIXS with Fouriertransform limited time and energy resolution.

Bill Schlotter wschlott@slac.stanford.edu CLIC April 7, 2016

SLAC

Wei-Sheng Lee, SLAC

Life Sciences & Matter in Extreme Conditions at LCLS-II

Life Science

- Small-scale structural dynamics at Å resolution
 - Serial nano-crystallography
- Large scale conformational dynamics
 - Molecular movies single particle imaging (2-6 keV)
 - Solution scattering fluctuation SAX

Matter in Extreme Conditions

- Warm & hot dense matter lab. astrophysics
- Rapid compression, shock & impact physics
- Material weakening and hydrodynamic "flow" on ultrafast time scales

SLAC

Other Backup

LCLS-II will enable completely new x-ray methods

-SLAC

Five Grand Challenges for Science and the Imagination (2007)

Challenges at the Frontiers of Matter and Energy: Transformative Opportunities for Discovery Science (2015)

RIXS for Chemistry

• RIXS experimental setup for studying liquids

K. Kunnus, et al., Rev. Sci. Inst., 83, 123109 (2012)

SLAC

Bill Schlotter wschlott@slac.stanford.edu