

LHCXSWG ggH report

Achilleas Lazopoulos (ETH Zürich), <u>Andrea Massironi</u> (Northeastern), Chris Hays (Oxford), Dag Gillberg (Carleton), Giovanni Petrucciani (CERN), Giulia Zanderighi (CERN), Stefano Forte (Milano)

7th - 8th July 2016

Preparatory Meeting of the LHC Higgs Cross Section Working Group

http://indico.cern.ch/event/510558/

- Inclusive cross section
- Jet binned cross section

See Chris talk

- Benchmarks for cross sections and differential distributions
- Effects of heavy quarks masses

• ggF draft for YR4 https://cds.cern.ch/record/2194224

- Comparison of **parton** level code and **hadron** level codes with different accuracy and phase space usability
- From experimental side
 - A lot of analyses exploiting **different phase spaces**
 - Need to **combine** the different analyses to get the best measurement
 - Accurate modeling of the differential distributions required

Parton level

• Parton level code:

- Hres D. de Florian, G. Ferrera, M. Grazzini, D. Tommasini, H. Sargsyan
 - NNLO QCD accuracy, with NNLL QCD resummation for small p_TH and matching to NLO QCD H+1jet at large p_TH
- CuTe T. Becher, M. Neubert, and D. Wilhelm
 - NNLL QCD resummation at small p_TH , and matching to NLO QCD H + 1 jet at large p_TH
- NRV D. Neill, I. Z. Rothstein, and V. Vaidya
 - NNLL resummed accuracy matched to the fixed-order O (α_s^4) computation
- MRT P. F. Monni, E. Re, P. Torrielli
 - NNLL for p_T H distribution matched to the NNLO (α_s^5) fixed-order prediction for Higgs+jet
- BFGLP R. Boughezal, C. Focke, W. Giele, X. Liu, and F. Petriello
 - H + 1jet at NNLO QCD
- CGGJ X. Chen, E. W. N. Glover, T. Gehrmann, M. Jacquier
 - Same as BFGLP
- STWZ-BLPTW R. Boughezal, X. Liu, F. Petriello, I. W. Stewart, F. J. Tackmann, J. R. Walsh, and S. Zuber
 SCET-based resummation for the jet veto at NNLL ' +NNLO
- JVE A. Banfi, F. Caola, F. A. Dreyer, P. F. Monni, G. P. Salam, G. Zanderighi, and F. Dulat
 - N³LO+NNLL+LLR accurate resummation for the jet veto, including heavy quark mass effects up to NLO
- Gosam + Sherpa G. Cullen, N. Greiner, G. Heinrich, G. Luisoni, P. Mastrolia, G. Ossola, T. Reiter, and F. Tramontano, T. Gleisberg, S. Höche, F. Krauss, M. Schönherr, S. Schumann, F. Siegert and J. Winter
 up to two additional jets at NLO OCD accuracy.
 - up to two additional jets at NLO QCD accuracy

- Hadron level code (different scale choices):
 - MG5_ aMC@NLO R. Frederix, S. Frixione, E. Vryonidou, and M. Wiesemann
 - up to two additional jets at NLO QCD accuracy with the FXFX merging scheme
 - top quark mass included via reweighting of the events
 - **Powheg NNLOPS** *K. Hamilton, P. Nason, E. Re, and G. Zanderighi*
 - NNLO QCD accuracy for inclusive events, and NLO+PS for Higgs+one jet
 - Top and bottom quark mass effects are included up to NLO

• Uncertainty mainly from QCD variation

Higgs \mathbf{p}_{T}

Higgs \mathbf{p}_{T}

• Bins of **p_TH**

• The numbers in italic font have been obtained by using the N³LO cross section with the EW component subtracted, 48.58 - 2.4 = 46.18 pb

	$p_{T,H}/\text{ GeV}$			
Prediction	< 20	> 60	> 120	
HRes	34.9%	20.9%	5.60%	
CUTE	38.8%	18.2%	4.76%	
MRT	38.3%	20.7%	6.00%	
NRV	47.3%	18.0%	5.74%	
BLPTW	—	_	_	
JVE	—	—	_	
CGGJ	—	19.4%	5.83%	
GOSAM+SHERPA	—	_	_	
POWHEG NNLOPS	36.5%	21.0%	5.20%	
aMCNLO MG5	34.9%	23.9%	6.84%	

Jets and jet bin uncertainty

• The numbers in italic font have been obtained by using the N³LO cross section with the EW component

subtracted, 48.58 – 2.4 = 46.18 pb

GOSAM +SHERPA use separate predictions for each

jet bin: ggF + 1, 2 and 3 jets at NLO

• In all other cases numbers are normalized to their respective predictions

	$N_{ m jets}, \ p_{T,j} > 30 \ { m GeV}$				
Prediction	= 0	= 1	≥ 2	≥ 3	
HRes	_	_	_	_	
CUTE	_	—	—	_	
MRT	_	—	—	_	
NRV	_	_	_	_	
BLPTW	62.2%	25.2%	12.6%	_	
JVE	60.7%	_	_	_	
CGGJ	63.8%	24.9%	11.3%	3.63%	
GOSAM+SHERPA	_	22.6%	10.0%	3.22%	
POWHEG NNLOPS	62.3%	26.6%	11.1%	2.63%	
aMCNLO MG5	60.2%	27.5%	12.4%	3.52%	

Jets kinematics

- Leading and sub-leading jet p_T
 - CCGI is NNLO
 - GoSam+Sherpa and MG5_aMC@NLO are LO
 - POWHEG NNLOPS ~ NNLO

CCGI, GoSam+Sherpa and MG5_aMC@NLO are NLO

● POWHEG NNLOPS is LO → uncertainty underestimated,
 but still prediction in agreement with others

Jets and VBF phase space

7th July 2016

A. Massironi - LHCXSWG meeting

• Inclusive cross section depends mildly on Higgs Effective Field Theory (HEFT) approach

• $\mathbf{m}_{top} \to \infty$

- Differential distributions depend on the m_{top} assumption, e.g. $p_T H \sim m_{top}$
- Proposed new method to include full top mass dependency with one-loop matrix element OpenLoops +
 Collier

Heavy quark mass effects

- Similar approach for the m_b inclusion
 - Fixed order
 - Fixed order + PS

7th July 2016

A. Massironi - LHCXSWG meeting

Summary

ggF draft for YR4 https://cds.cern.ch/record/2194224

- Inclusive cross section
- Jet binned cross section
- Benchmarks for cross sections and differential distributions
- Effects of heavy quarks masses
- The future:
 - co-ordinate with the VBF subgroup in order to run a joint study/benchmark of the signal and background in that channel
 - have a general public meeting with a discussion on various sources of theoretical uncertainty
 - discussion on procedures to estimate correlations in theory uncertainties in different phase spaces
 - produce benchmarks with **common settings**

Jets and VBF phase space

- Jets in VBF phase space
 - p_T of Hjj system
 - HJJJ not reliable at low p_T

VBF phase space

	$m_{jj} > 400$ (GeV, $\Delta y_{jj} > 2.8$	$m_{jj} > 600 \text{ GeV}, \Delta y_{jj} > 4.0$		
Prediction	no jet3 veto	$p_{T,j3} < 30 \text{ GeV}$	no jet3 veto	$p_{T,j3} < 30 \text{ GeV}$	
POWHEG NNLOPS	$653^{+86}_{-86}~{ m fb}$	$435^{+54}_{-54}~{ m fb}$	$283^{+36}_{-36}{ m fb}$	$198^{+24}_{-24}~{ m fb}$	
aMCNLO MG5	$512^{+152}_{-133}~{ m fb}$	329^{+92}_{-84} fb	$214^{+62}_{-57}{ m fb}$	142^{+39}_{-37} fb	
GOSAM+SHERPA HJJ@NLO	$610^{+74}_{-120} { m fb}$	435^{+0}_{-70} fb	$268^{+32}_{-55}~{ m fb}$	195^{+0}_{-31} fb	
Powheg Nnlops, $k = 1.05$	$683^{+90}_{-90}~{ m fb}$	455^{+57}_{-57} fb	$296^{+38}_{-38}{ m fb}$	$207^{+25}_{-25}~{ m fb}$	
aMCNLO MG5, $k = 1.41$	$721^{+214}_{-188}~{ m fb}$	463^{+129}_{-118} fb	$302^{+87}_{-80}{ m fb}$	$200^{+55}_{-52}~{ m fb}$	

• Predicted cross sections for $gg \rightarrow H$ with VBF topology

• QCD uncertainties shown for P OWHEG NNLOPS are not valid (the third jet is from the showering)

• The last two rows show result from normalizing the inclusive cross section to 46.18 pb

General idea

