Report from the ttH/tH Subgroup

Preparatory Meeting of the LHC Higgs Cross Section Working Group 7 July 2016

Stefan Guindon,
Chris Neu,
Stefano Pozzorini,
Laura Reina

Recap: ttH/tH Section of YR4

- Significant amount of work went into the results of the ttH/ tH section of YR4
 - 80+ pages
 - 40+ authors
- Focus was on:
 - state-of-the-art calculations of ttH and tH signal xsecs, including systematic uncertainties
 - SOTA xsecs for particularly troublesome backgrounds
 - comparison of various fixedorder QCD+PS event generators
- This work is essential for the current ttH and tH campaigns at the LHC

47	6	ttH and tH ⁸ 81
48	1	Introduction
49	2	NLO QCD+EW predictions for $t\bar{t}H$ production
50	3	Comparison of NLO QCD+Parton Shower simulations for $t\bar{t}H(b\bar{b})$ 91
51	4	Off-shell effects in $t\bar{t}H$ production
52	4.1	$t\bar{t}H$ with off-shell top decays: $W^+W^-b\bar{b}H$ production at NLO QCD 101
53	4.2	Irreducible background and interference effects: $l\nu+jj+b\bar{b}b\bar{b}$ production at LO QCD . 104
54	5	$tar{t}H$ production beyond NLO
55	5.1	$t\bar{t}H$ production including NLO+NLL soft-gluon resummation in the partonic center-of-
56		mass the shold limit
57	5.2	$t\bar{t}H$ production at approximate NNLO via soft-gluon resummation in the "PIM" limit 115
58	6	tH production at NLO in QCD
59	6.1	t-channel tH production
60	6.2	s-channel tH production
61	7	$t\bar{t}Z$ and $t\bar{t}W^{\pm}$ production
62	7.1	NLO QCD+EW predictions for $t\bar{t}Z$ and $t\bar{t}W^{\pm}$ production
63	7.2	Comparison of NLO QCD predictions for differential distributions
64	7.3	$t\bar{t}VV$ production $(V=Z,W^{\pm},H)$ at NLO QCD
65	8	NLO+PS simulations of $t\bar{t}b\bar{b}$ production
66	8.1	NLO+PS tools and simulations
67	8.2	Parton showers, PDF, and α_s
68	8.3	Input parameters and scale choices
69	8.4	NLO+PS predictions for $t\bar{t}+b$ -jets cross sections in b -jet bins
70	8.5	ttb differential analysis
71	8.6	ttbb differential analysis
72	8.7	Summary and conclusions

Thorough review of the many contributions in

from the January General Meeting.

A few highlights.... impossible to recap everything

State of the Art Signal Modeling – ttH

- ttH signal xsec calculated at NLO in both QCD and EW
- In an inclusive sense, NLO EW effect small but:
 - EW corrections play an important role and ruin the simple view of the xsec being proportional to y_t^2
 - Impact of EW corrections more important in boosted regime – which experiments seek to use to help suppress backgrounds
- Recommendation, 13 TeV, M_H=125:

$$\sigma(\text{ttH}) = 507.2^{+5.8\%}_{-9.2\%} \text{ (scale)} \pm 3.6\% \text{ (pdf,}\alpha_s) \text{ fb}$$

- $K_{OCD} = (\sigma(NLO)/\sigma(LO))_{OCD} = 1.25$
- $-\sigma(NLO)_{EW}/\sigma(NLO)_{OCD} = 1.7\%$
- Details of the conditions under which the calculation was executed can be found in YR4

SOTA ttH, cont'd

- Thorough comparison of NLO QCD + PS event generators for ttH
- Look at the mutual compatibility of the available tools
 - Identify and understand differences
 - Improve generally all tools looking at the these processes

Compare:

- S-MC@NLO using OPENLOOPS 1.2.3 + SHERPA 2.2.0,
- MADGRAPH5_AMC@NLO 2.3.2 + PYTHIA8 2.1.0,
- POWHEL + PYTHIA8 2.1.0.
- POWHEG BOX + PYTHIA8 2.1.0,
- HERWIG7 using OPENLOOPS 1.2.4+ MADGRAPH5_AMC@NLO 2.3.0+ HERWIG7.
- Examine two cases
 - On-shell case (no t,tbar, or H decays)
 - With decays: $ttH \rightarrow evb\mu vbbb$
- General good agreement, save for N _{b-iet} dist for POWHEL + P8
 - artifact of massless b convention in top decays v. massive b in PS

Exclusive b-jet multiplicity distribution

SOTA ttH, cont'd

- Thorough comparison of NLO QCD + PS event generators for ttH
- Concept of the of the
 - off-shell effects in ttH
 - ttH beyond NLO
 - NLO + NLL soft-gluon resummation in partonic ctr of mass limit
 - aNNLO via soft-gluon resummation in the pairinvariant mass (PIM) threshold limit

• Exa

Con

S-MC@

MADGR

PowHePowhe

HERWIG

- With decays: ttH → evbµvbbb
- General good agreement, save for N _{b-iet} dist for POWHEL + P8
 - artifact of massless b convention in top decays v. massive b in PS

Exclusive b-jet multiplicity distribution

10-4

10⁻⁵

PowhegBox+PY8

Herwig7+MG+OpenLoops

State of the Art Signal Modeling – tH

t-channel:

- Initiated by b quarks, so need to consider 4FS v. 5FS
- Kinematics similar, choose 5FS as default and express choice as flavor-scheme-choice syst
- Recommendation, 13 TeV, M_{H} =125:

$$\sigma(tH)^{t\text{-ch}}_{TOT}$$
 = 74.25 +6.5% (scale,FS) ±3.7%(pdf, α_{S}) fb

See YR4 for details

State of the Art Signal Modeling – tH

s-channel:

 No complications from flavor numbering scheme

$$\sigma(tH)^{s-ch}_{TOT} = 2.879^{+2.4\%}_{-1.8\%} \text{ (scale)}$$

 $\pm 2.2\% \text{ (pdf,}\alpha_{S}) \text{ fb}$

tW-channel:

- large interference with ttH
- NLO simulation complicated
- not treated in YR4 (more later)

State of the Art Background Modeling – ttV, ttVV'

- tt+V(V) is an important background, esp for ttH, $H \rightarrow WW$ signatures
- YR4 contains NLO QCD+EW predictions for the relevant ttVand ttVV processes:

Process	\sqrt{s}	$\sigma_{ m QCD}^{ m NLO}$	$\sigma_{ ext{QCD+EW}}^{ ext{NLO}}$	K_{QCD}	$\delta_{\mathrm{EW}}[\%]$	Scale[%]	PDF[%]
$t\bar{t}Z$	13	841.3(1.6)	839.3(1.6)	1.39	-0.2	+9.6% - 11.3%	+2.8% $-2.8%$
$t\bar{t}W^+$	13	412.0(0.32)	397.6(0.32)	1.49	-3.5	+12.7% $-11.4%$	+2.0% $-2.0%$
$t \bar{t} W^-$	13	208.6(0.16)	203.2(0.16)	1.51	-2.6	+13.3% $-11.7%$	+2.1% $-2.1%$

13 TeV σ [ab]	$t\bar{t}W^+Z$	$t \bar{t} W^- Z$	$t\bar{t}ZZ$
NLO QCD	$2705(3)^{+9.9\%}_{-10.6\%} ^{+2.7\%}_{-2.7\%}$	$1179(2)^{+11.2\%}_{-11.2\%} ^{+3.7\%}_{-3.7\%}$	$1982(2)^{+5.2\%}_{-9.0\%}$ $^{+2.6\%}_{-2.6\%}$
LO	$1982(2)^{+28.4\%}_{-20.6\%} + ^{3.3\%}_{-3.3\%}$	$839.4(6)^{+28.2\%}_{-20.5\%} ^{+4.2\%}_{-4.2\%}$	$1611(1)^{+31.4\%}_{-22.1\%} {}^{+2.7\%}_{-2.7\%}$
K-factor	1.36	1.40	1.23
13 TeV σ [ab]	$t\bar{t}W^+H$	$t\bar{t}W^-H$	$t\bar{t}ZH$
NLO QCD	$1089(1)^{+1.8\%}_{-5.9\%} ^{+2.6\%}_{-2.6\%}$	493.0(5)+2.6% +3.4%	$1535(2)^{+1.9\%}_{-6.8\%} + 3.0\%$
LO	$997.0(9)^{+26.9\%}_{-19.8\%} + 3.0\%$	$440.0(4)_{-19.8\%}^{+26.9\%} _{-3.8\%}^{+3.8\%}$	$1391(1)^{+32.2\%}_{-22.6\%} {}^{+2.8\%}_{-2.8\%}$
K-factor	1.09	1.12	1.10
13 TeV σ [ab]	$t\bar{t}W^+W^-$	$t\bar{t}W^{\dagger}W^{-}$ (4f)	$t\bar{t}HH$
NLO QCD	-	$11500(10)^{+8.1\%}_{-10.9\%} + ^{3.0\%}_{-3.0\%}$	756.5(7)+1.1% +3.3%
LO	$8380(5)^{+33.2\%}_{-23.1\%} ^{+3.0\%}_{-3.0\%}$	$8357(5)^{+33.3\%}_{-23.1\%} + 3.0\%$	$765.4(5)^{+31.8\%}_{-22.4\%} ^{+2.9\%}_{-2.9\%}$
K-factor	_	1.38	0.99

State of the Art Background Modeling – ttV, ttVV'

 Similar as in the study of signal ttH production, a comparison of NLO QCD + PS event generators for ttV was performed as well

Comparing:

- SHERPA 2.2.0 + OPENLOOPS 1.2.3,
- MADGRAPH5_AMC@NLO 2.3.2,
- POWHEL.
- As in other such studies, great care was taken to define the conditions under which the comparisons would be done
- Specifics of the conditions are given in Section 6.7 of YR4

State of the Art Background Modeling – tt+bb

- tt+HF is the biggest obstacle for ttH observation at the LHC
 - Large irreducible bkgd to ttH,Hbb
- Modeling challenges
 - Complicated process
 - Large higher order contributions,
 hence NLO is essential:
 - Scale uncertainty improves from 70-80% at LO to 20-30% at NLO
 - 4FS v. 5FS
- Several NLO+PS simulations of tt+bb available

Tools	Matching method	Shower	FNS
SHERPA 2.2.1+OPENLOOPS 1.2.3	S-MC@NLO	SHERPA	4FNS
MADGRAPH5_AMC@NLO 2.3.2+PYTHIA8 2.1.0	MC@NLO	Рутніа8	4FNS
POWHEL+PYTHIA8 2.1.0	POWHEG	Рүтніа8	5FNS

Inclusive b-jet multiplicity distribution MG5aMC@NLO PowHel+PY8 10 NLO 10^{-1} 10^{-2} PowHel+PY8 2

More on these critical studies in a few slides

- ttH/tHq is a bit unique compared to other WG1 subgroups:
 - ttH production has not yet been observed

- So what?
 - Direct measurement of top-Higgs coupling is essential for full characterization of the Higgs boson
 - Best avenue is through observation of ttH production
 - Need to do everything we can to enable the observation of this process
 - A single-channel observation of ttH will need corroboration in other decay modes
 - » $ttH,H\rightarrow bb$ and ttH,multileptons and $ttH,H\rightarrow \tau\tau$ all important
 - » $ttH,H\rightarrow\gamma\gamma$ essential as well especially for precision studies post-measurement
 - Window to new physics:
 - Non-standard top-Higgs coupling could point to BSM contributions to ggF Higgs production and/or H $\rightarrow \gamma \gamma$ decay
 - tHq production has sensitivity to negative Yukawa coupling until this
 possibility is excluded, need to consider this possibility

- Several needs still exist
- Followup studies in mind to be undertaken building on the contents of YR4:
 - PS effects in ttH production
 - NLO ttH+jets
 - study reliability of aNNLO for ttH based on NNLL-SCET resummation
 - t,W,H decays in tH simulations
 - ttV+multijet merging
 - − off-shell tt Z/γ^* , Z/γ^* → ll
 - others...

Taken from
Stefano's talk in
January!

Several needs still exist:

1. Finalize tt+HF background recommendations for ttH,H→bb

- Namely, define recommendation for tt+b-jets treatment to be used at both experiments, including systematic uncertainties. Needs to go beyond YR4 studies to include validation from experimental observations.
- Understand 4FS tt+bb mismatch from YR4 (see next slide)

NLO tt+bb in 4FS

- Comparisons of two 4FS tt+bb NLO generators
 - MG5_aMC@NLO and Sherpa+OpenLoops
 - Same settings are used for the generation of events
- Truth level comparison shows:
 - same inclusive tt+bb cross-section as SherpaOL
 - Larger XS in nb >= 2 regions
- Systematics from scale variations
 - mainly renormalisation, on aMC@NLO+Py8 are large: +50% / -30%

Selection	Tool	$\sigma_{ m NLO} [{ m fb}]$	$\sigma_{ m NLO+PS}$ [fb]	$\sigma_{ m NLO+PS}/\sigma_{ m NLO}$
$n_b \ge 1$	SHERPA+OPENLOOPS	$12820^{+35\%}_{-28\%}$	$12939^{+30\%}_{-27\%}$	1.01
	MadGraph5_aMC@NLO		$13833^{+37\%}_{-29\%}$	1.08
	POWHEL		$10073^{+45\%}_{-29\%}$	0.79
$n_b \ge 2$	SHERPA+OPENLOOPS	$2268^{+30\%}_{-27\%}$	$2413^{+21\%}_{-24\%}$	1.06
	MADGRAPH5_AMC@NLO		$3192^{+38\%}_{-29\%}$	1.41
	PowHel		$2570^{+35\%}_{-28\%}$	1.13

_	Inclusive b-jet multiplicity distribution			
	[dq] ^万	- MG5aMC@NLO		
	10			
	10			
	10			
	1. 1. 1. 1. 1. 1.	6		
	0/0	1 8		
		1 2 3 4 N _{b-jets}		

parton shower	on
hadronisation	off
UE	off
top decays	off

Current work: Checks of samples including top decays to compare ttbar kinematics and determine if variations are possibly larger in analysis phase-space.

Several needs still exist:

1. Finalize tt+HF background recommendations for ttH,H→bb

- Namely, define recommendation for tt+b-jets treatment to be used at both experiments, including systematic uncertainties. Needs to go beyond YR4 studies to include validation from experimental observations.
- Understand 4FS tt+bb mismatch from YR4 (see next slide)
- Define matching procedure for NLO 4FS tt+bb with NLO 5FS tt+inclusive jets; experimental studies to validate such a procedure.
- No attention yet paid to tt+charm-jets despite the large contribution the process plays to signal-rich regimes in the ttH,H→bb analysis

Next Phase of Our Work, cont'd

2. $tt+\gamma\gamma$ at (N)NLO:

- ttH,H $\rightarrow \gamma \gamma$ signal is clear, yet very rare
 - Searches for ttH,H→γγ currently rely on data-driven background models
 - Parametrized into signal region based on a falling exponential model
- But ttH,H→γγ will provide the mostclear and satisfying signature:
 - a diphoton bump at 125
 - in events with a well-identified ttbar system with b-tagged jets, leptons, MET, reconstructed top candidates

- Hence, ttH,H→γγ will be a very important process for precision differential ttH production studies
- Ideal to have high-precision simulated samples of $\overline{tt+\gamma\gamma}$ as part of such characterization studies

Next Phase of Our Work, cont'd

3. Additional signal: tHW

- Not much attention paid to this SM process
- Enhancement predicted in some
 BSM models (eg, LHT model as described here)
- Would like to have highprecision cross section predictions for this process

