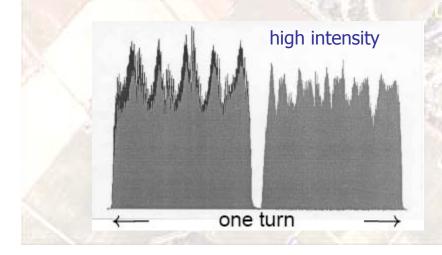


New Opportunities in the Physics Landscape at CERN New Proton Drivers at CERN

13 May 2009


E. Shaposhnikova CERN/BE for SPSU (SPS Upgrade) Study Group

SPS injectors: present and future

SPS now

- Commissioned in 1976, accelerated p, pbar, e-, e+, light and heavy ions
- FT/CNGS beam from PS:
 - practically debunched beam
 - 5-turn extraction
 - no bunch-to-bucket transfer
 - injection below transition

Nominal parameters of two main types of proton beam in the SPS

		CNGS	LHC
injection P_s	GeV/c	14	26
extraction P_s	GeV/c	400	450
transition		yes	no
bunch spacing	ns	5	25
filling pattern		10/11	(3-4)/11
N of batches		2	3-4
bunches/batch		2100	72
intensity/bunch	10^{10}	1.05	11.5
total intensity	10^{13}	4.4	3.3
cycle length	s	6.0	21.6
trans. emit.	μ m	12	3.5
		10 A 10	

→ Present LHC and FT/CNGS beams are very different

SPS in future (> 2018)

	PS2 offer per cycle		SPS record		LHC request		
	at 50 GeV			at 450 GeV		at 450 GeV	
Parameters	LHC I	LHC II	FT	LHC	CNGS	Ι	II
bunch spacing [ns]	25	50	25	25	5	25	50
bunch intensity /10 ¹¹	4.0	5.5	1.2	1.2	0.13	>1.9	5.0
number of bunches	168	84	840	288	4200	336	168
total intensity /10 ¹³	6.7	4.6	10.0	3.5	5.3	>6.4	8.4
long. emittance [eVs]	0.4	0.4	0.4	0.6	0.8	<1.0	<1.0
norm. H/V emitt. [µm]	3.0	3.0	9/6	3.6	8/5	3.5	3.5

M. Benedikt et al., PS2 WG

F. Zimmermann et al.

 \rightarrow SPS upgrade is necessary

FT beam in SPS with PS2

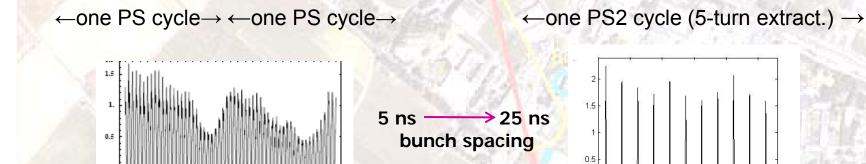
- Total maximum intensity:

- 2 x higher \rightarrow 10¹⁴ (minus losses)
- Maximum injection energy: $13 \text{ GeV} \rightarrow 25 \text{ GeV}$ or 50 GeV
- Pulse length at injection: $2 \times \text{longer} \rightarrow \text{no}$ flat bottom
- Beam macro and micro structure in SPS: 5 times less bunches, more gaps

with PS

with PS2

100


150

[ns]

200

250

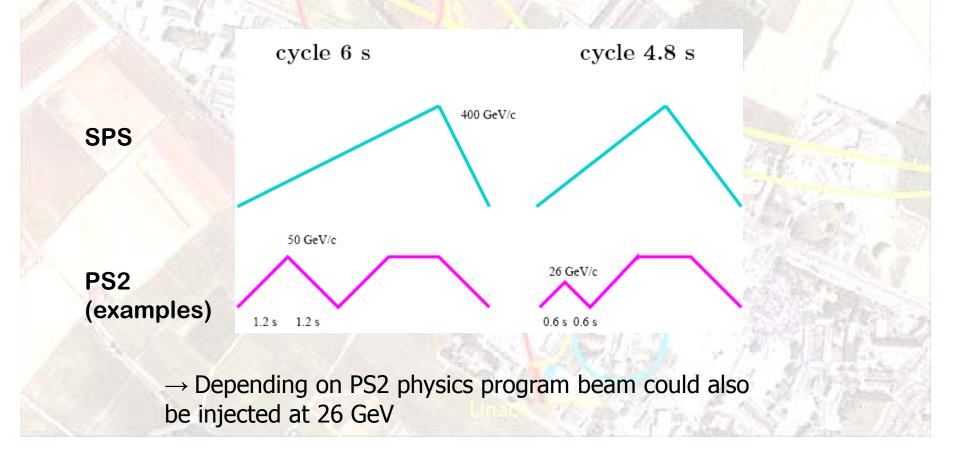
50

Slow-extracted beam: time scales

Now:

- 43.4 kHz, 2 x 43 kHz and 200 MHz structure
- RF gymnastics at 400 GeV during 2.5 ms, extraction 30 ms after
 - time to close 5 ns bunch spacing ≈2.5 ms
 - min time to close max 1.05 μ s gap \approx 230 ms (8 MV + unstable phase)
- first (100 -1000) ms of spill are not used (depending on experiment)

With PS2:

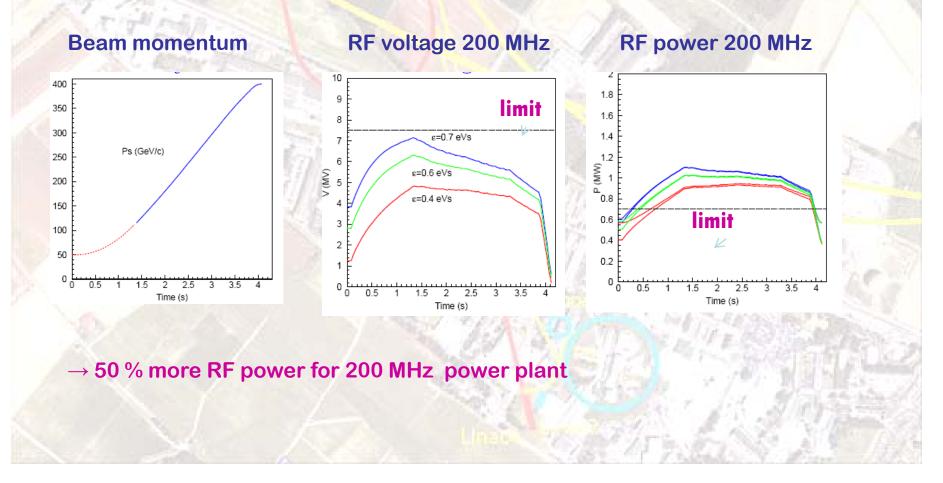

- 43.4 kHz, 5 x 43 kHz and 40 MHz structure
- larger beam gaps and bunch spacing \rightarrow longer debunching time
 - time to close 25 ns bunch spacing ≈11 ms
 - min time to close max 1.7 μ s gap \approx 370 ms (8 MV + unstable phase)
 - spill can be improved by RF manipulations (200 or 800 MHz recapture)
 - up to 15 x higher bunch intensity for FT beam
- higher duty cycle (see talk by I. Efthymiopoulos)

Potential proton flux per year

flux = intensity x availability x \mathbf{n}_{cycle}

- Maximum intensity 10¹⁴ (minus losses)
- Average availability now $\approx 80\% \rightarrow$ should be better in future
- $n_{cycle} = n_{day} \times 24 \times 3600 \times sharing / T^{SPS}_{cycle}$
 - typically $n_{day} \approx 200$
 - sharing \approx 0.85 if only user apart from LHC (maybe \approx 0.5 more realistic)
 - $T^{SPS}_{cycle} = k \times T^{PS}_{cycle}$, now $T^{SPS}_{cycle} = 6 \text{ s (with 1.2 s flat bottom)}$
 - in future minimum cycle length could be 6 s − 1.2 s = 4.8 s with 3 s acceleration time but at much higher intensities (acceleration of nominal LHC beam in SPS to 450 GeV takes 7.5 s!) → 6 s cycle?

SPS cycle length



Short SPS cycle - 4.8 s (26 - 400) GeV/c

 \rightarrow Twice more RF power at 200 MHz - upgrade after R&D

Long SPS cycle - 6 s (50 - 400) GeV/c

Known intensity limitations and possible actions (under study in SPSU)

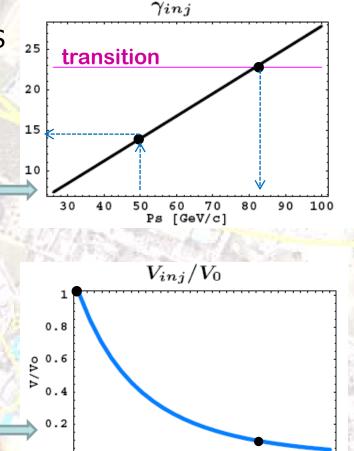
- transition crossing \rightarrow injection above transition (25 GeV or 50 GeV)
- e-cloud effect → beam pipe coating
- instabilities → impedance search and reduction, active (feedbacks) and passive (increased nonlinearity) damping
- beam loss \rightarrow collimation system, e-cloud elimination, radioprotection
- beam loading in the 200 MHz and 800 MHz RF systems → power upgrade, reduction of number of sections per cavity
- heating of machine elements (MKE, MKDV kickers, ...) → impedance reduction, new design
- vacuum (beam dump and MKDV outgassing), septum sparking,...
- hardware modifications (injection kickers, beam dump, RF systems, transverse damper, beam diagnostics)

Protons on target per year @400 GeV

For 200 days of operation, 80% beam availability and 0.85 beam sharing

SPS cycle length	6.0 s	4.8 s	6.0 s		
SPS acceleration time	3.0 s	3.0 s	4.2 s		
Injection energy	13 GeV	25/50 GeV	25/50 GeV		
SPS intensity/pulse					
4.4x10 ¹³ – "nominal" CNGS	0.86x10 ²⁰				
5.7x10 ¹³ – "record" SPS	1.11x10 ²⁰				
with new injectors 9x10 ¹³ – maximum PS2 (-10%)		2.2x10 ²⁰	1.8x10 ²⁰		
M. Meddahi, E. S., CERN-AB-2007-013					

Dreaming...


- Inject 5 times 10^{14} from PS2 at 26 GeV/c \rightarrow 1.2 s x 4 flat bottom
- Cycle length 4.8 s + 4.8 s = 9.6 s, twice longer
- Factor 2.5 increase in POT per year
- But very high intensity in the SPS...

Ions in the SPS with PS2

• From now on the injected FT ions in the SPS will be similar to the LHC ions + debunching at a higher (intermediate) energy needed for an acceptable spill

•Injection into SPS above transition only for $P_s > 82 \text{ GeV/c}$ (proton equivalent for Pb^{54+}_{208} in PS2)

With PS2:
 •smaller RF frequency sweep →
 no fixed frequency acceleration (used now)
 •smaller space charge tune spread
 •shorter injection plateau
 •smaller matched RF voltage at injection

30

35

40

45

Ps [GeV/c]

50

55

60

Summary

- The upgraded CERN accelerators will produce high intensity beam with high reliability both for the LHC and SPS physics programs
- All machines in the LHC chain will be replaced except the SPS, which will profit from a higher injection energy
- The SPS upgrade is a key element for the SPS physics program and LHC to benefit fully from the new upstream machines
- Improvements to SPS performance can be implemented on a different time scale (before 2018)

Acknowledgments

SPS Upgrade Study Group: <u>http://paf-spsu.web.cern.ch/paf-spsu/</u>
Members: G. Arduini, F. Caspers, S. Calatroni, P. Chiggiato, K. Cornelis, B. Henrist, E. Mahner, E. Metral, G. Rumolo, M. Taborelli, C. Yin Vallgren, F. Zimmermann

M. Benedikt, I. Efthymiopoulos, R. Garoby

RF colleagues: T. Bohl, E. Ciapala, T. Linnecar, G. Papotti