BNL Particle Physics Facilities Performance and Planned Upgrades

RHIC luminosity and polarization evolution

Electron Beam Ion Source (EBIS) pre-injector

Plans for luminosity upgrades

Low energy Au – Au collisions (Critical point search)

Electron-Ion Collider @ BNL (eRHIC and MeRHIC)

Thomas Roser New Opportunities @ CERN May 13, 2009

RHIC – a High Luminosity (Polarized) Hadron Collider

A Mini-Bang:

Nuclear matter at extreme temperatures and density

Colliding gold at 100 + 100 GeV/nucleon (40 TeV total cm energy)

Plus: other species (p-p, Cu-Cu, ...) asymmetric collisions (d-Au, [p-Au]) several energies (100+100, 65+65, 32+32, 10+10, 4.6+4.6)

Produce and explore a new state of matter

Animation by Jeffery Mitchell (Brookhaven National Laboratory). Simulation by the UrQMD Collaboration

- b. Hot and dense phase → strongly interacting hot dense material ("perfect liquid")
- c. Freeze-out –

a. Formation phase -

emission of hadrons

parton scattering

RHIC at BNL

Hard Scattering at RHIC

A "Perfect Liquid"

- The matter produced in nearcentral ion-ion collisions at RHIC flows as a more nearly perfect (very low shear viscosity) liquid than any previously known.
- RHIC probes matter in the very strong coupling limit of QCD.
- Qualitative insight provided through mathematical duality with string theory that includes gravity.

Delivered Integrated Luminosity and Polarization

<u>Nucleon-pair luminosity</u>: luminosity calculated with nucleons of nuclei treated independently; allows comparison of luminosities of different species; appropriate quantity for comparison runs.

RHIC Spin Physics

NATIONAL LABORATOR

• Requires high beam polarization and high luminosity

RHIC – First Polarized Hadron Collider

Without Siberian snakes: $v_{sp} = G\gamma = 1.79 \text{ E/m} \rightarrow \sim 1000 \text{ depolarizing resonances}$ With Siberian snakes (local 180° spin rotators): $v_{sp} = \frac{1}{2} \rightarrow \text{no first order resonances}$ Two partial Siberian snakes (11° and 27° spin rotators) in AGS

Luminosity and Polarization Lifetimes in RHIC at 100 GeV

- EBIS (~ 2011) (low maintenance linac-based pre-injector; all species including U and polarized ³He)
- RHIC luminosity upgrade (~ 2012): [Au-Au: 40 × 10²⁶ cm⁻² s⁻¹(× 4); 500 GeV p-p: 2 × 10³² cm⁻² s⁻¹]
 - 0.5 m β^* for Au Au and $p\uparrow p\uparrow$ operation
 - Stochastic cooling of Au beams and 56 MHz storage rf system in RHIC
- Further luminosity upgrade for $p\uparrow p\uparrow$ operation (~ 2014): [500 GeV p-p: 6 - 12 × 10³² cm⁻² s⁻¹]
 - 0.3 m β^* for 500 GeV p \uparrow p \uparrow operation (× 1.6)
 - Electron lens in RHIC for head-on beam-beam compensation (× 2-4)
- ► Low energy ($\sqrt{s=5...30 \text{ GeV}}$) Au-Au collisions for critical point search
 - $\sim 1...5$ MeV electron cooling of Au beams at injection
- ➢ eRHIC: high luminosity (≥ 1 × 10³³ cm⁻² s⁻¹) eA and pol. ep collider using 10 20 GeV electron driver, based on Energy Recovering Linac (ERL), and strong cooling of hadron beams (~ 2020) Exploring gluons at extreme density!

Electron Beam Ion Source (EBIS)

- > New high brightness, high charge-state pulsed ion source, ideal as source for RHIC
- > Produces beams of all ion species including noble gas ions, uranium (RHIC) and polarized He³ (eRHIC) (~ $1-2 \times 10^{11}$ charges/bunch with $\varepsilon_{N,rms} = 1-2 \ \mu m$)
- > Achieved 1.7×10^9 Au³³⁺ in 20 µs pulse with 8 A electron beam (60% neutralization)
- Construction of EBIS, RFQ and IH Linac complete by 2010

Stochastic Cooling and 56 MHz SRF cavity

- Longitudinal stochastic cooling of core of bunched beam demonstrated at 100 GeV/n in RHIC counteracting longitudinal IBS.
- Full longitudinal and transverse stochastic cooling under construction

56 MHz SRF storage cavity:

- > Avoid rebucketing operation.
- > Greatly reduces satellite bunches
- Re-entrant quarter wave resonator

Luminosity Increase with Full Stochastic Cooling

- Transverse stochastic cooling in one plane only
- Second plane cooled through x-y coupling
- 5 8 GHz bandwidth split up into 16 frequency bands
- Each frequency has its own cavity kicker

Electron Lenses for pp Operation

14

- Polarized proton luminosity is limited by head-on beam-beam tune spread
- Low energy electron beam interacting with proton beam can compensate head-on beam-beam tune spread (× 2 - 4 luminosity?)
- Single and multi particle simulation underway

QCD Critical Point Search

- Operation below regular injection energy with large b2 corrections
- Collisions clearly identifiable in detectors
- Luminosity as expected

Au – Au luminosity scaling with energy

eRHIC

Center mass energy range: 15 - 100 (200) GeV

Note: eA program for eRHIC needs as high an electron energy as possible even with a trade-off for the luminosity: up to 30 GeV would be possible.

ERL-based Linac-Ring eRHIC

1. stage: Medium Energy eRHIC in RHIC tunnel

- > 250 GeV p^{\uparrow} × 4 GeV e ^{\uparrow} or 100 GeV Au × 4 GeV e
- > Peak luminosity: 1 × 10³² cm⁻² s⁻¹

Energy Recovery Linac Test Facility

- > Test of high current (0.5 A), high brightness ERL operation
- \blacktriangleright Electron beam for RHIC (coherent) electron cooling (54 MeV, 10 MHz, 5 nC, 4 μ m)
- > Test for 10 20 GeV high intensity ERL for eRHIC
- > Test of high current beam stability issues, highly flexible return loop lattice
- ➤ Allows for addition of a 2nd recirculation loop

- Idea proposed by Y. Derbenev in 1980, novel scheme with full evaluation developed by V. Litvinenko
- Fast cooling of high energy hadron beams
- > Made possible by high brightness electron beams and FEL technology
- ➤ ~ 20 minutes cooling time for 250 GeV protons → much reduced electron current, higher eRHIC luminosity
- > Proof-of-principle demonstration possible in RHIC using Test-ERL.

Summary

Since 2000 RHIC has collided, at many different collision energies,

- > Gold on gold with luminosity exceeding design luminosity by factor of six
- Asymmetric ions at high luminosity
- Polarized protons with 60 % average beam polarization

Future runs / upgrade plans:

- Uranium beams from EBIS
- > Luminosity upgrade to 40×10^{26} cm⁻² s⁻¹ through high energy beam cooling
- > High luminosity 250 x 250 GeV polarized proton run at 2×10^{32} cm⁻² s⁻¹ and later at 6 12×10^{32} cm⁻² s⁻¹
- > Low energy Au-Au collisions for critical point search
- High luminosity polarized electron ion collider
 - > MeRHIC: 250 GeV p \uparrow x 4 GeV e \uparrow ; 1 × 10³² cm⁻² s⁻¹
 - > eRHIC: 250 GeV p↑ x 10 GeV e↑; 3×10^{33} cm⁻² s⁻¹

RHIC Luminosity and Polarization Goals

Parameter	unit	Achieved	Luminosity upgrade	
Au-Au operation		(2007)	(~ 2011)	
Energy	GeV/nucleon	100	100	
No of bunches	•••	103	111	
Bunch intensity	10 ⁹	1	1	
Ave. delivered luminosity**	10 ²⁶ cm ⁻² s ⁻¹	12	40 *	
p↑- p↑ operation	<u> </u>	(2006/08)	(~ 2012)	
Energy	GeV	100	100 (250)	
No of bunches	•••	111	111	
Bunch intensity	10 ¹¹	1.5	2.0	
Ave. delivered luminosity**	10 ³⁰ cm ⁻² s ⁻¹	23	80 (200)	
Polarization	%	60	70	
BROOKHAVEN	* 5 × 'enh	anced' luminosity	and $20 \times \text{design luminosity}$	

NATIONAL LABORATORY

** without vertex cuts

ERL-based eRHIC Parameters

	Electron-Proton Collisions				Electron-Au Collisions			
	High energy		Low energy		High energy		Low energy	
	р	e	р	e	Au	e	Au	e
Energy, GeV	250	10	50	3	100	10	50	3
Number of bunches	166		166		166		166	
Bunch spacing, ns	71	71	71	71	71	71	71	71
Bunch intensity, 10 ¹¹ (10 ⁹ for Au)	2.0	1.2	2.0	1.2	1.1	1.2	1.1	1.2
Beam current, mA	420	260	420	260	180	260	180	260
95% normalized emittance, $\pi\mu m$	6	460	6	570	2.4	460	2.4	270
Rms emittance, nm	3.8	4.0	19	16.5	3.7	3.8	7.5	7.8
β*, cm	26	25	26	30	26	25	26	25
Beam-beam parameters	0.015	0.59	0.015	0.47	0.015	0.26	0.015	0.43
Rms bunch length, cm	20	1.0	20	1.0	20	1.0	20	1.0
Polarization, %	70	80	70	80	0	0	0	0
Peak Luminosity/n, 10 ³³ cm ⁻² s ⁻¹	2.6		0.53		2.9		1.5	
Aver.Luminosity/n, 10 ³³ cm ⁻² s ⁻¹	0.87		0.18		1.0		0.5	
Luminosity integral /week, pb ⁻¹	530		105		580		290	

If effective high energy transverse cooling becomes possible the required electron beam current can be reduced to 50 mA, maintaining the same luminosity.

Medium Energy eRHIC parameters for e-p collisions

	no cooling of protons; parallel to RHIC ops		pre-cooled proton beam		high energy cooling of proton beam	
	р	е	р	е	р	e
Energy, GeV	250	4	250	4	250	4
Number of bunches	111		111		111	
Bunch intensity, 10 ¹¹	2.0	0.31	2.0	0.31	2.0	0.31
Beam current, mA	320	50	320	50	320	50
95% normalized emittance, $\pi\mu m$	15	440	6	175	1.5	44
Rms emittance, nm	9.4	9.4	3.8	3.8	0.94	0.94
β*, cm	50	50	50	50	50	50
rms bunch length, cm	20	0.2	20	0.2	5	0.2
beam-beam parameter	0.002	0.44	.004	0.69	0.015	0.69
disruption parameter		3.1		7.7		7.7
Peak Luminosity, 10 ³² cm ⁻² s ⁻¹	0.93		2.3		9.3	

