High-precision studies on pure species using Penning traps

Magdalena Kowalska

CERN, PH-Dept., ISOLDE

On behalf of the ISOLTRAP collaboration
High-precision mass studies

Mass of the nucleus \Rightarrow binding energy of the system:
Determines the energy released in decays and reactions:

$= N \cdot e + Z \cdot \text{e} + Z \cdot \text{e}$
- binding energy

Nuclear Structure:
shell closure, pairing, deformation, halos

$\delta m/m \leq 1 \cdot 10^{-7}$

Astrophysics:
Nucleosynthesis, r- and rp-process

$\delta m/m < 1 \cdot 10^{-7}$

Weak Interaction:
symmetry tests, CKM unitarity (V_{ud})

$\delta m/m < 3 \cdot 10^{-8}$

At ISOLDE, masses of exotic nuclei are investigated with ISOLTRAP:
the ‘mother’ of online Penning trap mass spectrometers,
where also decay-spectroscopy can be performed on purified samples

Unique: the beams available and the know-how at ISOLDE and ISOLTRAP
Masses and Penning traps

Mass determined from the ion cyclotron frequency:

\[v_c = \frac{1}{2\pi} \frac{q}{m} B \]

Mass uncertainty decreases with the interaction time

Penning trap mass spectrometry achievements:
- ultra-high accuracy: better than 10^{-8} (e.g. \(^{22}\)Mg)
- extreme resolving power: close to 10 million (Hg isotopes)
- isobaric separation (e.g. rare-earth nuclides)
- isomer separation (e.g. Cu and Tl isotopes)
- single-ion sensitivity: production rates of 1 ion/s (\(^{252}\)No)
- high efficiency: half-lives down to 10 ms (\(^{11}\)Li)

But not all at the same time!

Limits: half-life and production rate, beam purity

Solution: increase the beam intensity and the charge state => planned within the HIE (High Intensity and Energy) ISOLDE project
HIE-ISOLDE and mass studies

HIE-ISOLDE impact on ISOLTRAP:
- Increased beam intensity
- Better resolving power
- Highly-charged ions

Push the limits of online mass studies:

- **Access to more exotic species**
 - Halo nuclei: 12,14Be, 11Li

- **Access to species with high contamination**
 - Astrophysics: 82Zn, 132Sn and 140Te regions

- **Higher precision**

- **Weak interaction: V_{ud} matrix element from mirror transitions**, 21Na, 23Mg