HIE-ISOLDE
The technical options

Mats Lindroos and Matteo Pasini, the ISOLDE technical team and the ISOLDE collaboration
(Yacine Kadi)
HIE-ISOLDE: Next step with three objectives

✓ ENERGY: REX energy upgrade and increase of current capacity (Matteo Pasini)
 • Energy upgrade in 3 stages: 8 MeV and 10 MeV/u and lower energy capacity

✓ QUALITY: ISOLDE radioactive ion beam quality - more than half already financed through the ISOLDE collaboration
 • Smaller longitudinal and transverse emittance
 • Done
 • RILIS upgrade and LARIS construction
 • Done
 • Charge breeder upgrade
 • Better mass resolution
 • Continued target and ion source developments
 • On-going and absolutely essential!

✓ INTENSITY: ISOLDE proton driver beam intensity upgrade - strongly linked to PS Booster improvements including linac4 (INTENSITY WP, Richard Catherall)
 • Faster cycling of the booster
 • New target stations for ISOLDE
 • New target design
 • New target handling system
HIE-ISOLDE project

• **HIE-ISOLDE 1**
 - Energy upgrade up to 8-10 MeV/u with a superconducting linac, beam quality improvements and the design study of the intensity upgrade
 • R&D activity for LINAC funded

• **HIE-ISOLDE 2**
 - Intensity upgrade for 30 kW on target
 • Linac 4 beam via PSB and Light SPL beam to ISOLDE
 - Super-HRS
Existing REX-ISOLDE linac – a world leading RIB facility
HIE-ISOLDE LINAC - layout

3 stages installation

1.2 MeV/u

3 MeV/u

5.5 MeV/u

8 MeV/u

10 MeV/u
HIE-ISOLDE SC-linac

• SC-linac between 1.2 and 10 MeV/u
• Energy fully variable; energy spread and bunch length are tunable. Average synchronous phase \(\phi_s = -20 \) deg
• \(2.5<A/q<4.5 \) limited by the room temperature cavity
• 16.02 m length (without matching section)
• No ad-hoc longitudinal matching section (incorporated in the lattice)
Final Beam Energies

N.B! With ECR technology:
- $A/q=6 \quad 7.9 \text{ MeV/u}$
- $A/q=9 \quad 5.4 \text{ MeV/u}$
Cavity prototype
Cryomodule design

Each cryomodule can be isolated and taken out in case of failure.

Common vacuum concept to minimize the inter-cryomodule distance.

This concept foresees the possibility to align the solenoid when cold from the outside (beam alignment).
HIE-ISOLDE SC linac
DOE proposal - Comparison EBIS/ECR/1+

<table>
<thead>
<tr>
<th>Efficiency for single charge-state re-acceleration</th>
<th>Proposed high-intensity EBIS/T breeder</th>
<th>Next-generation ECR breeder</th>
<th>1+ scheme with stripping</th>
<th>Gain EBIS/T vs ECR</th>
<th>Gain EBIS/T vs 1+</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε (A<40)</td>
<td>> 60 %</td>
<td>< 20 %</td>
<td><40%</td>
<td>>3</td>
<td>>1.5</td>
</tr>
<tr>
<td>ε (A=100)</td>
<td>> 50 %</td>
<td>< 20 %</td>
<td><10%</td>
<td>>2.5</td>
<td>>5</td>
</tr>
<tr>
<td>ε (A=200)</td>
<td>> 40 %</td>
<td>< 20 %</td>
<td><5%</td>
<td>>2</td>
<td>>8</td>
</tr>
<tr>
<td>Chance of reaching breeding performance</td>
<td>Present performance 25-50% of values</td>
<td>Present performance 20-40% of values</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breeding (trapping) time</td>
<td><20 ms</td>
<td>>100 ms</td>
<td>NA</td>
<td>>5</td>
<td>NA</td>
</tr>
<tr>
<td>Beam rate limit</td>
<td>>10^9/s</td>
<td>>>10^11/s</td>
<td>No limit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chance of reaching beam rate capability</td>
<td>RHIC test EBIS: 10^9 ions/pulse</td>
<td>No risk</td>
<td>No risk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam purity - stable beam current intensities</td>
<td>pA</td>
<td>>> μA</td>
<td>NA</td>
<td>>>1000</td>
<td>NA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proposed High-Intensity EBIT</th>
<th>MSU EBIT</th>
<th>TITAN EBIT</th>
<th>BNL test EBIS</th>
<th>REX-EBIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron beam energy (keV)</td>
<td>< 60</td>
<td>< 30</td>
<td>< 60</td>
<td><30</td>
</tr>
<tr>
<td>Electron beam current (A)</td>
<td>< 10</td>
<td>< 5</td>
<td><5</td>
<td><20</td>
</tr>
<tr>
<td>Central current density (A/cm^2)</td>
<td><10^5</td>
<td><10^4</td>
<td><10^4</td>
<td><600</td>
</tr>
<tr>
<td>Magnet design</td>
<td>Helmholtz coil + Solenoid</td>
<td>Helmholtz coil + Solenoid</td>
<td>Helmholtz coil</td>
<td>Solenoid</td>
</tr>
<tr>
<td>Maximum magnetic field (T)</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Trap length (m)</td>
<td>1 m</td>
<td>0.5 m</td>
<td>0.1 m</td>
<td>0.7 m</td>
</tr>
</tbody>
</table>

O. Kester et al.
RFQ cooler “ISCOOL” - DONE
EPSCR grant (Manchester, Birmingham)

Emittance meter

RFQ cooler

Alkali ion source

Continuous mode

\(~5\pi \cdot \text{mm} \cdot \text{mrad} \)

90% emittance

\(~30\pi \cdot \text{mm} \cdot \text{mrad} \)

90% emittance as input

<table>
<thead>
<tr>
<th>Ion</th>
<th>Transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li⁺</td>
<td>17%</td>
</tr>
<tr>
<td>Na⁺</td>
<td>27%</td>
</tr>
<tr>
<td>K⁺</td>
<td>60%</td>
</tr>
<tr>
<td>Cs⁺</td>
<td>70%</td>
</tr>
</tbody>
</table>
The Resonance Ionization Laser Ion Source

RILIS beams of 28 elements are available so far:

<table>
<thead>
<tr>
<th>Elements Available at ISOLDE LIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-step: (1 resonance)</td>
</tr>
<tr>
<td>3-step: (2 resonance)</td>
</tr>
</tbody>
</table>

4 types of ionization scheme:

2-step: (1 resonance)
(2 resonance)
3-step: (2 resonance)
(3 resonance)
New Nd:YAG lasers at ISOLDE RILIS - DONE

Diode Pumped Solid State Nd:YAG Lasers as replacement of Copper Vapor Lasers:

CVL
- 15 ns @ 11 kHz
- Green Beams: 45 W @ 511 nm
- Yellow Beams: 35 W @ 578 nm

SSL
- 8 ns @ 10 kHz
- Green Beams: 90 - 100 W @ 532 nm
- UV Beam: 18 W @ 355 nm
- IR Beam: 35 W @ 1064 nm

Improvement of Ga ionization efficiency by SSL:
- Two dye lasers were applied at 1st step of excitation - x 2
- More power could be delivered to HRS target at the 2nd step of excitation
- Better power stability

Knut and Alice Wallenberg foundation grant
Road map of RILIS upgrade

- Installation of solid state lasers for dye laser pumping. Keeping CVL lasers at RILIS as backup until reliable SSL performance is reached.

- Upgrade of dye lasers: purchasing and installation of commercial dye lasers

- Installation of solid-state tunable lasers with own pump laser in addition to the dye laser system

- Duo-RILIS: two laser systems available for operation with a possibility of quick switch from one element to another

Knut and Alice Wallenberg foundation grant
LARIS results – A new RILIS scheme for Manganese - DONE

- Replacement of current scheme which uses the CVL green beam.

Outcome of RIS study of Mn at LARIS:

Many new auto-ionizing states found

Various promising Nd:YAG based schemes tested and ready for efficiency measurement at RILIS

Knut and Alice Wallenberg foundation grant
ISOLDE target area - The 3D Laser Scan

Cloud of point in the CERN coordinate system

Reference Points

May, 2008

J. Sarret, L. Bruno
Manipulator concept design

- 6-DOF Manipulator mounted on ceiling monorails
- Equipped with tool changer for mounting different tools
- Recoverable by decoupling (remotely) rail gear drive
- High lifting capacity (FFE)
- Target & electrode accurate / sensitive operations
Overall layout of the new injectors (1/2)
Analysis

- **SPL block diagram**

```
Linac4  β=0.65  β=1  β=1  β=1
```

Extraction to ISOLDE

- **Main impact of faster cycling rate: klystron modulators (SPL + Linac4)**

Limited P_{average} + technology limited cycling rate (~ 15 Hz)

$P_{\text{average}} \propto \text{Modulator pulse length} \times \text{Rep. rate}$

$P_{\text{average}} \propto (\text{Modulator rise} + \text{Cavity fill} + \text{Beam pulse}) \times \text{Rep. rate}$

- **Other consequences of faster cycling rate:**
 - Magnets power supplies
 - Beam instrumentation
 - Controls…

$\beta = 0.65$ 732 MeV 1.4 GeV

160 MeV (560 MeV) (1 GeV) 2.5 GeV $4-5 \text{ GeV}$

$E_{\text{acc}} = 200 \mu s$

$\propto E_{\text{acc}}^2$
Minimum cost options

⇒ LP-SPL type modulators ($P_{\text{nominal}} \equiv 0.35$ % duty cycle)

* Basic period : 600 ms – PS2 cycling time: 2.4 s

<table>
<thead>
<tr>
<th>Beam energy (GeV)</th>
<th>Max. pulse duration (ms)</th>
<th>Max. current during pulse (mA)</th>
<th>Cycling rate* (Hz)</th>
<th>Max. protons /pulse ($\times 10^{13}$)</th>
<th>Max. beam power (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4</td>
<td>0.9</td>
<td>20</td>
<td>1.25 (3 out of 4 pulses)</td>
<td>11</td>
<td>31</td>
</tr>
<tr>
<td>0.35</td>
<td>28</td>
<td>2.92 (7 out of 8 pulses)</td>
<td></td>
<td>6.1</td>
<td>29</td>
</tr>
</tbody>
</table>

Baseline solution

Need for wide range high power RF phase shifters… ⇒ Cost!
Summary

• Planning for a staged implementation project

• HIE-ISOLDE 1
 - HIE LINAC R&D within the EUCARD I3 and with Belgium grant is making good progress
 - Test of the first cavity for the SC linac are expected in June/July at TRIUMF in Vancouver
 - On-going beam quality development e.g. RFQ cooler and RILIS
 - Construction of linac and design study of new target area

• HIE-ISOLDE 2
 - Construction of new target area and Super-HRS
 - Linac 4 (10 kW) and LP-SPL (30 kW)