Measurement of Magnetic Moments of Charmed Baryons

Stephan Paul
TU-München
Overview

- Magnetic moments and measurements
- Challenges for charmed baryons
- Experimental approach
 - Crystal channeling
 - Requirements
- Count rate estimates
Status and Predictions of Magnetic Moments

- **Basic quantity** characterising fermion
- The case of strange baryons
 - Predictions: $\mu_{\Lambda_c} = 0.3 - 0.5 \mu_N$
 - Mostly: $\mu_{\Lambda_c} \sim 0.37 \mu_N$ and $\mu_{\Lambda_c} \sim 0.42 \mu_N$
 - Predictions: $\mu_{\Xi_c} = 0.3 - 0.8 \mu_N$

<table>
<thead>
<tr>
<th>B</th>
<th>M_{exp}/μ_N</th>
<th>$M_{\text{SU(3)}\text{breaking}}/\mu_N$</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>2.793 ± 0.000</td>
<td>2.793</td>
</tr>
<tr>
<td>n</td>
<td>-1.91 ± 0.000</td>
<td>-1.969</td>
</tr>
<tr>
<td>Λ</td>
<td>-0.613 ± 0.004</td>
<td>-0.604</td>
</tr>
<tr>
<td>Σ^+</td>
<td>2.458 ± 0.010</td>
<td>2.481</td>
</tr>
<tr>
<td>Σ^0</td>
<td>$--$</td>
<td>0.66</td>
</tr>
<tr>
<td>Σ^-</td>
<td>-1.160 ± 0.025</td>
<td>-1.155</td>
</tr>
<tr>
<td>Ξ^0</td>
<td>-1.250 ± 0.014</td>
<td>-1.274</td>
</tr>
<tr>
<td>Ξ^-</td>
<td>-0.6507 ± 0.0025</td>
<td>-0.6507</td>
</tr>
<tr>
<td>$\Sigma^0 - \Lambda$</td>
<td>$\pm 1.61 \pm 0.08$</td>
<td>1.541</td>
</tr>
</tbody>
</table>

Good description possible but problems with XPT (loops)

$$\bar{\mu}_Q = \frac{\vec{S} \cdot q \cdot e}{2m_Q}$$
Measurement Technique

• ‘Standard’ method for short lived particles (hyperons)
 – Produce polarized hyperons with high energy proton beams
 • High x_F and high p_T required
 • Polarization observed transverse to production plane
 • Mechanism theoretically not understood but many models
 – Hyperon extraction via magnetic channel
 • Spin precession in guiding B-field

• Spin analysis
 • Use parity violating decays (interference of S- and P-waves in decay amplitudes)
 • Use decays with high analyzing power
 – $\Lambda \to p \pi^- (\alpha = 0.642)$
 – $\Sigma^+ \to p \pi^0 (\alpha = -0.980)$
 – Vary B-field to vary spin precession angle
Challenge for Charmed Particles

- **Lifetime** of charmed baryons small (200-400fs)
 - Flight path \((c\tau\gamma\beta) \) of \(\Lambda^+_c \sim 0.8\text{cm} \) @300 GeV; 8 cm @3 TeV
 - Flight path \((c\tau\gamma\beta) \) of \(\Xi^+_c \sim 1.6\text{cm} \) @300 GeV; 16 cm @3 TeV

- **Production** cross section very small
 - \(\sigma(\Lambda_c) \sim 40 \mu\text{b/nucleon} \) \((10^{-3} \sigma_{\text{tot}})\) at 300 GeV
 - \(\sigma(\Lambda_c) \sim 400 \mu\text{b/nucleon} \) \((10^{-2} \sigma_{\text{tot}})\) at 8 TeV) crude extrapolation

- **Polarisation** unknown (except for R608 experiment)

- **Branching ratio** for individual decays small
 - \(\text{BR} \Lambda_c \rightarrow \Lambda\pi^+ \sim 1\pm0.3\% \)
 - Analyzing power large \((\alpha_{\Lambda\pi} = -0.91\pm0.15) \)
 - \(\text{BR} \Lambda_c \rightarrow \Lambda l^+\nu \sim 2\pm0.6\% \)
 - Analyzing power large \((\alpha_{\Lambda l^+\nu} = -0.86\pm0.04) \)
 - \(\text{BR} \Lambda_c \rightarrow \Sigma^+\pi^0 \sim 1\pm0.34\% \)
 - Analyzing power large \((\alpha_{\Sigma\pi} = -0.45\pm0.31) \)

- **Effect** expected to be small: \(\mu_c \sim 0.4 \mu_N \sim \mu_{\Lambda_c} \)
Experimental realization I

- Use channeling to produce high magnetic fields
- Need positively charged particle (scattering off nuclei for -)
- Straight crystal gives NO net E (B) field
- Need bent crystal
- Bending and particle gives effective B-field seen

Channeling for particles with $E_T < E_{crit}$

Channeling in bent crystal:
- Superimpose centrifugal potential
- Lower E_{crit}
Spin Rotation for Channeling Particles

- Measurement for charged particles in a static B-field
 - Sensitivity to $g-2$
 - $\Delta \omega = \omega_{\text{Larmor}} - \omega_{\text{cyclotron}}$
 - Typical B-fields: $\int B \cdot dl = 15 \text{ Tm}$

- For channeling in crystal:
 - E-fields: 10^{10}V/cm, B-fields 10^3T
 - $\int B \cdot dl = 10 \text{ Tm}$ for $l \sim 1\text{cm}$

\[\Delta \phi_{\text{Spin}} = \frac{1}{2} (g - 2) \cdot \gamma \cdot \Delta \phi_{\text{Bending}} \]
\[\Delta \phi = [1 - \mu_{\Lambda_c^+} \frac{m_{\Lambda_c^+}}{m_p}] \cdot \gamma \cdot \Delta \phi \]
\[\Delta \phi_{\text{Spin}} \text{ is } \Box (\text{trajectory, spin}) \]
Experimental Realization

- Assume FNAL realization (Σ^+): $\Delta\phi_{\text{trajectory}} = 1.6 \text{ mr}$

<table>
<thead>
<tr>
<th>μ_c</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.6</th>
<th>$[\mu_N]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 TeV $\Delta\Phi_{\Lambda c}$</td>
<td>-1500</td>
<td>-784</td>
<td>-73</td>
<td>1350</td>
<td>[mr]</td>
</tr>
<tr>
<td>6 TeV $\Delta\Phi_{\Lambda c}$</td>
<td>-2240</td>
<td>-1176</td>
<td>-110</td>
<td>2020</td>
<td>[mr]</td>
</tr>
</tbody>
</table>

$$d\Delta\phi_{\text{spin}} = \gamma\Delta\phi_{\text{trajectory}} \frac{m_{\Lambda c}}{m_N} \cdot d\mu_{\Lambda c} = 10.6 \cdot d\mu_{\Lambda c} \quad @ \ 6 \text{ TeV}$$

- 5% measurement on $\mu_{\Lambda c} \rightarrow 200\text{ mrad in } \Delta\Phi_{\text{spin}}$
- Wide range of momenta accepted
Count Rates Estimates I

- Assume
 - $8\text{TeV} \ (\hat{\sigma} \ s \sim 120 \ \text{GeV})$
 - $\sigma(\Lambda_c) \sim 400 \ \mu\text{b/nucleon}$
 - $x_F > 0.4 \ \text{and} \ p_T > 0.6 \ \text{GeV}/c \ (\text{as in hyperon polarization})$
 - $10^8 \ \text{p/s} \ (100 \ \text{days})$
 - assume R608 cross section and p spectrum
 - $N_{\Lambda_c} = 4 \ \Lambda_c /s / \%\lambda_1 (\rightarrow \Lambda\pi) \ \tilde{\gamma}10^7 \ \text{s}$
 - assume $L = 8\text{cm}$ for silicon and crystal (decay losses 63%)
 - Channeling efficiency:
 - Crystal height: 1cm
 - Crystal length 4-5cm
 - Crystal width 1mm
 - $\theta_{\text{vert}}: \ \text{no limits}$
 - $\theta_{\text{hori}}: \ \theta < \theta_{\text{crit}} \sim 10\mu\text{rad}$
 - $\varepsilon_{\text{channeling}} \sim 0.01$
Count Rates Estimates II

- Dechanneling (interactions with e^-): no problem
- Bending dechanneling (distortions due to jig)
 - $R_{\text{curv}} = 30\text{m}$ with $p \sim 6\text{ TeV}$: $f_{\text{dechannel}} \sim 0.5$

- S_{acc}: Surface acceptance: (channeling/total area: 0.5)
- Total acceptance: $\Delta \Omega \cdot f_{\text{dechannel}} \cdot S_{\text{acc}} \sim 2.5 \times 10^{-3} (\sim 5 \times 10^{-4})$
- $B = 45\text{ Tm}$ (2.5cm length, $\Delta m_{\text{beam}} = 1.6\text{mr}$) at FNAL
- $B \sim 300\text{ Tm}$ (mechanically tried $\rightarrow \Delta m_{\text{beam}} = 12\text{mr}$) at FNAL
- $\Delta x = 3-5\% \lambda_I$
- $N_{\text{total}} \sim 50000 \Lambda_c (\rightarrow \Lambda \pi)$
Set-up and ‘But’s:

- What is the polarization of \(\Lambda_c \)?
- Which final state to take?
 - \(\Lambda_c \rightarrow \Lambda \pi^+ \): flight path of \(\Lambda \) (\(c\tau = 7.8 \text{cm} \)) \(\sim 160 \text{m} \) (low detection efficiency)
 - \(\Lambda_c \rightarrow \Sigma^+ \pi^0 \): flight path of \(\Sigma \) (\(c\tau = 2.4 \text{cm} \)) \(\sim 45 \text{m} \)
 - \(\Lambda_c \rightarrow p K^- \pi^+ \): unknown analyzing power (but good sec. vertex)
 -

- Reconstruction efficiency (typical) 5-10%
• How to identify channeled particles
 – Deflection angle (short silicon telescope $\Delta L = 2-3$ cm)
 – Specific (reduced) energy loss in crystal (instrumented silicon crystal)

• Effective number of events: $N_{\Lambda_c}^{\Lambda_c} = N_{\text{tot}}^{\Lambda_c} P^2 \alpha^2$
 – $P(\Lambda_c) = 0.6$ (e.g. Bis-2)
 – $\alpha_{\Lambda_c} \tilde{\gamma} \alpha_{\Lambda} = 0.9 \times 0.64 = 0.57$
 – σ for $\Delta \Phi_{\text{Spin}} = 200$ mr $\rightarrow \Delta P/P = 20\%$ ($\mu_{\Lambda_c} = 0.4 \mu_N$) $\rightarrow N_{\text{tot}}^{\Lambda_c} (\Lambda \pi) \sim 350$
Conclusion

- Charged weakly decaying members of charm/beauty baryons can be measured via crystal channeling
 - Charm: $\Lambda_c^+ \quad \Xi_c^+$
 - Beauty $\Xi_b^- \quad \bar{\Xi}_{cb}^+$
- Effect: $\Delta \theta: [-500,500]$mr
- Events needed: few hundred
- Need: very high energy beam (TeV)
 - Short lifetime
 - High effective field (spin precession)
- Cross section and polarization uncertain
- Analyzing power of most interesting channel unknown
- Seems feasible based on present knowledge
- Helps to understand heavy baryons
Estimates of μ_c from radiative D*-decays

• What do we know about μ_c?
• Lets look at radiative decays

$$R_{\Gamma}^D = \frac{\Gamma_0^0}{\Gamma^+} = \frac{\Gamma(D^*0 \rightarrow D^0 \gamma)}{\Gamma(D^{*+} \rightarrow D^{+} \gamma)} = \left(\frac{E_0^0}{E^+}\right)^3 \left[\frac{\mu_u + \mu_c}{\mu_d + \mu_c}\right]^2$$

- Experiment: $R_{\Gamma}^D > 6$

- Predictions: $R_{\Gamma}^D \sim 12 - 92$ (see e.g. Lepage et al.)

• Agreement: but large uncertainties
References

- S. Paul (1993)
 Talk given at an LHB meeting (spokesperson G. Carboni)