Application of LHC and SPS (HiRadMat) to Study High Energy Density States in Matter

By

N.A. Tahir
GSI Darmstadt, Germany

Design Parameters of the LHC Beam

LHC will provide two counter rotating 7 TeV proton beams

Each beam will consist of \(2808\) proton bunches

Each bunch will contain \(1.15 \times 10^{11}\) protons

Total number of protons is \(3 \times 10^{14}\)

Bunch length = \(0.5\) \(\text{ns}\), Separation between bunches = \(25\) \(\text{ns}\)

Total length of the bunch train = \(89\) \(\mu\text{s}\)

Transverse intensity distribution: Gaussian with \(\sigma = 0.2\) \(\text{mm}\)

\(362\) \(\text{MJ}\) energy / beam sufficient to melt 500 kg copper
First Step: Energy loss of 7 TeV protons in solid copper target is calculated using the FLUKA Code

Target Geometry:
- **Solid Cu Cylinder**
 \[L = 5 \text{ m}, \ r = 1 \text{ m} \]
- **Peak energy deposition**
 \[1200 \text{ GeV/proton/cm}^3 \]

Second Step:
This energy loss data is converted into kJ/g and is used as input to a 2D hydrodynamic computer code, BIG2.
Specific Energy Deposition by a Single Bunch in Solid Copper [FLUKA Calculations]

- Specific energy (kJ/g) deposited by one bunch of protons along L at r = 0.
- Maximum deposition of about 2.3 kJ/g occurs at L ~ 16 cm.
Specific energy deposition (kJ/g) vs radius at, L = 8 cm, 16 cm, 24 cm and 36 cm, by a single proton bunch.
• The target is studied in r-Z geometry.
• Specific energy deposition in each simulation cell at every timestep is normalized with respect to the line density along the axis.
• This allows for reduction of specific energy deposition in low density part of the target.
• This model allows for studying the proton “Tunneling Effect”.

I: LHC Beam on a Solid Copper Cylinder

\[L = 5 \text{ m} \]

\[r = 5 \text{ cm} \]
Specific Energy Deposition

Specific Energy (kJ/g)
Time = 500 ns

Specific Energy (kJ/g)
Time = 2500 ns

Specific Energy (kJ/g)
Time = 4500 ns

Specific Energy (kJ/g)
Time = 9500 ns

Saturates to 25 kJ/g
Temperature

$4 \times 10^4 \text{ K}$
Pressure

30 GPa
Penetration depth = 35 m
II: SPS Beam on a Tungsten Target (HiRadMat Facility)

- SPS Beam accelerates protons to 450 GeV
- 288 bunches in the beam
- Each bunch contains 1.15×10^{11} protons
- Total number of protons is about 3×10^{13}
- Bunch length = 0.5 ns, Separation between bunches = 25 ns
- Total length of the bunch train ~ 7 μs
- Transverse intensity distribution: Gaussian with $\sigma = 0.088$ mm, 0.28 mm and 0.88 mm

Solid tungsten cylindrical target facially irradiated
$\sigma = 0.088 \text{ mm}$

FLUKA Energy Loss Calculations [GeV/cc/p]

$\sigma = 0.28 \text{ mm}$

$\sigma = 0.88 \text{ mm}$
FLUKA Calculations of Energy Loss
Specific Energy Deposition per Bunch

Solid tungsten cylinder $L = 2 \text{ m}, r = 5 \text{ cm}$
Facially irradiated by the SPS beam
Specific Energy Deposition (7.2 μs)

<table>
<thead>
<tr>
<th>σ (mm)</th>
<th>E_s (kJ/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.088</td>
<td>7.4</td>
</tr>
<tr>
<td>0.280</td>
<td>6.75</td>
</tr>
<tr>
<td>0.880</td>
<td>5.83</td>
</tr>
</tbody>
</table>
Temperature (7.2 μs)

<table>
<thead>
<tr>
<th>σ (mm)</th>
<th>T (10⁴ K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.088</td>
<td>4.0</td>
</tr>
<tr>
<td>0.280</td>
<td>3.7</td>
</tr>
<tr>
<td>0.880</td>
<td>2.6</td>
</tr>
</tbody>
</table>
Minimum Density (7.2 µs)

<table>
<thead>
<tr>
<th>σ (mm)</th>
<th>ρ (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.088</td>
<td>0.61</td>
</tr>
<tr>
<td>0.280</td>
<td>1.09</td>
</tr>
<tr>
<td>0.880</td>
<td>3.24</td>
</tr>
</tbody>
</table>
Profiles at $t = 7.2 \mu$s
Conclusions

- Numerical simulations of full impact of LHC and SPS beams on solid targets have been carried out.

- It is seen that in both cases the target is severely damaged.

- Penetration depth of the projectile particles is much longer than predicted by a static model.

- An additional application of the LHC as well as SPS can be to study HED physics.

- Fully integrated simulations with FLUKA coupled to BIG2 are required.