Neutrons at CERN n_TOF: A window to stellar evolution and nucleosynthesis

(Astro)Physics case for neutron cross section measurements

- Example of measurements performed so far at n_TOF
- The present experimental plan
- New opportunities with a second experimental beam-line

A Mengoni, ENEA, Bologna – IAEA, Vienna

Why neutrons in astrophysics?

e-charge mass half-life : 0 : 940 MeV : 10 min

The n_TOF Collaboration

Abundances: Anders and Grevesse, 1989

All chemical elements beyond Iron are synthesized by neutron interactions in stars

~ $\frac{1}{2}$ by the s-process (red giants) ~ $\frac{1}{2}$ by the r-process (explosive)

Solar system elemental abundances

reaction rate: $N_A N_n < \sigma_{n,\gamma}(E_n) \cdot v >_{kT}$

canonical s-process: $\sigma \cdot N_A \sim const.$

key quantity:
$$\sigma_{n,\gamma}(E_n)$$

The n_TOF Collaboration

from phenomenological...

$$\left\langle \boldsymbol{\sigma} \right\rangle_{A} N_{A} = \frac{\left\langle \boldsymbol{\sigma} \right\rangle_{A \to 1} N_{A \to 1}}{1 + 1/\tau_{0} \left\langle \boldsymbol{\sigma} \right\rangle_{A}} = \frac{f N_{56}}{\tau_{0}} \prod_{i=56}^{A} \left(1 + \frac{1}{\tau_{0} \left\langle \boldsymbol{\sigma} \right\rangle_{i}} \right)^{-1}$$

The n_TOF Collaboration

... to detailed stellar modeling: TP-AGB

C Arlandini, et al.: ApJ 525 (1999) 886

Status and requests

Needed: cross sections with uncertainties between 1 and 5% for complete set of isotopes from ¹²C to ²¹⁰Po, including unstable samples

Source: F Käppeler (2009)

Basic characteristics of experiments at n_TOF

- wide energy range
- high neutron flux & high energy resolution
- low repetition rate of the proton driver

source: P Rullhusen (GELINA)

232Th(r

comparison with GELINA (~ same average flux at 30m)

Basic characteristics of experiments at n_TOF

U Abbondanno et al. (The n_TOF Collaboration) Phys. Rev. Lett. **93** (2004), 161103

- wide energy range
- high neutron flux & high energy resolution
- Iow repetition rate of the proton driver
- Iow background conditions

Example: Branching point at ¹⁵¹Sm

• The branching at ¹⁵¹Sm can be used to determine the temperature during the s process.

Capture

¹⁵¹Sm 204,206,207,208Pb, 209Bi ²³²Th ^{24,25,26}Mg ^{90,91,92,94,96}Zr, ⁹³Zr ¹³⁹La 186,187,188OS 233,234 ²³⁷Np,²⁴⁰Pu,²⁴³Am Fission 233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

Measurements performed

s-process branching, temperature, density termination of the s-process, nucleosynthesis of Lead

neutron source for the s-process: ${}^{22}Ne(\alpha,n){}^{25}Mg$

massive stars, pre-solar grains

nuclear cosmo-chronometer

Planned measurements

Capture measurements		
Mo, Ru, Pd stable isotopes	r-process residuals calculation isotopic patterns in SiC grains	
Fe, and Ni (all stable isotopes)	s-process nucleosynthesis in massive stars	
A≈150 (isotopes varii) ⁷⁹ Se, Se (stable isotopes)	s-process branching points long-lived fission products s-process branching (T and ρ for the weak component)	
Other measurements		
¹⁴⁷ Sm(n,α), ⁶⁷ Zn(n,α), ⁹⁹ Ru(n,α) ⁵⁸ Ni(n,p), other (n,lcp)	p-process studies	

(*) Approved by the RB (P208/n_TOF13)

>>

The second n_TOF beam line & EAR-2

Flight-path length : ~20 m at 90° respect to p-beam direction expected neutron flux enhancement: ~ 100 drastic reduction of the t_0 flash

EAR-2: Optimized sensitivity

Improvements (ex: ¹⁵¹ Sm case)		consequences for sample mass
sample mass / 3 s/bkgd=1		✓ 50 mg
use BaF ₂ TAC	ε х 10	 ✓ 5 mg
■ use D ₂ O	Φ_{30} x 5	1 mg
use 20 m flight path	Φ ₃₀ x 100	10 μg

boosts sensitivity by a factor of 5000 !

problems of sample production and safety issues relaxed

Possible measurements at EAR-2

- ⁷⁹Se
- ⁹⁰Sr
- ¹²⁶Sn
- ¹⁴⁷Pm
- ¹³⁵Cs

all s-process branching points + they are important fission fragments

Conclusion

Neutron cross sections are key quantities for studying stellar evolution and nucleosynthesis. n_TOF offers the best conditions to obtain these nuclear physics quantities with the required accuracy

The n_TOF Collaboration is carrying on an extensive plan to measure cross sections relevant for nuclear astrophysics, in particular for s-process nucleosynthesis studies

Opportunities for obtaining new data for presently inaccessible nuclei (using extremely low quantities of material) will be open with the implementation of a second beam-line and a new experimental area (EAR-2)

The end

The n_TOF Collaboration

Capture studies: Fe, Ni, Zn, and Se

<u><<back</u>

Motivations:

- Study of the weak s-process component (nucleosynthesis up to A \sim 90)
- Contribution of massive stars (core He-burning phase) to the s-process nucleosynthesis.
- s-process efficiency due to bottleneck cross sections (Example: ⁶²Ni)

In addition:

Fe and Ni are the most important structural materials for nuclear technologies. Results of previous measurements at n_TOF show that capture rates for light and intermediate-mass isotopes need to be revised.

n TOF-Ph2

Capture studies: Fe, Ni, Zn, and Se

<u><<back</u>

The ⁷⁹Se case

• s-process branching: neutron density & temperature conditions for the weak component. • $t_{1/2} < 6.5 \times 10^4 \text{ yr}$

n_TOF-Ph2

In general:

- Stellar model
- s-abundance calculation
- r-abundance (CS22892-052)

See: Tavaglio *et al.*, APJ521 (1999) Arlandini *et al.*, APJ525 (1999)

Need for more than one r-process or need for improved s- abundances and cross sections?

<u><<back</u>

AGB stars

Source: F Herwig

<u> < <</u>

Capture

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi ²³²Th ^{24,25,26}Mg ^{90,91,92,94,96}Zr, ⁹³Zr ¹³⁹La 186,187,188<mark>O</mark>S 233,234 ²³⁷Np,²⁴⁰Pu,²⁴³Am Fission 233,234,235,236,238 ²³²Th ²⁰⁹Bi ²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments & publications

In summary:

Facility & Experimental setup Measurements

Conference Proceedings Total number of documents on db

- : 11 papers
- : 10 papers
 - (1 PRL, 9 PRC)
- : 51
- : 150

All data (published) can be found in the EXFOR database >>

The n_TOF Collaboration

Measurements performed so far

¹⁵¹Sm

```
s-process branching, temperature, density
```

^{204,206,207,208}Pb, ²⁰⁹Bi termination of the s-process, nucleosynthesis of Lead

^{24,25,26}Mg

neutron source for the s-process: ${}^{22}Ne(\alpha,n){}^{25}Mg$

^{90,91,92,94,96}Zr, ⁹³Zr, ¹³⁹La

massive stars, pre-solar grains

^{186,187,188}OS nuclear cosmo-chronometer