Towards a 10 µs, thin high resolution pixelated CMOS sensor system for future vertex detectors ## Rita De Masi IPHC-Strasbourg On behalf of the IPHC-IRFU collaboration - Physics motivations. - Principle of operation and performances. - MIMOSA-26 and its applications. - System integration. - Developments. - Summary and conclusions. VCI 2010 ## A vertex detector for the ILC **VCI 2010** #### Two alternative geometries - 5 single-sided layers. - 3 double-sided layers. #### Sensor requirements - Single point resolution ~ $3\mu m$. - Material budget 0.16/0.11% X₀/layer. - Integration time 25 100 μs. - Radiation tolerance ~0.3MRad, few 10¹¹n_{eq}/cm². - Averaged power dissipated << 100 W. σ_{IP} = a \oplus b/psin^{3/2}θ a \leq 5μm, b \leq 10μm GeV (a = 12μm, b = 70μm GeV @ LHC) ## CMOS sensor principle #### Signal collection - Charges generated in epitaxial layer → ~1000 e- for MIP. - Charge carriers propagate thermally. - In-pixel charge to signal conversion. #### Advantages - High granularity. - Thickness (~O(50μm)). - Integrated signal processing. #### Issues - Undepleted volume limitations . - radiation tolerance. - intrinsic speed. - Small signal O(100e⁻)/pixel. - In-pixel μ-circuits with NMOS transistors only. ## Basic performances - More than 30 different sensors designed, fabricated and tested (lab & beam). - Extensive use of 0.35μm CMOS technology. - Room temperature operation. - Noise ~10-15e-. - S/N ~ 15-30. - Detection efficiency ~100% @ fake hit rate O(10⁻⁴ -10⁻⁵). - Radiation tol. > 1MRad and 10^{13} n_{eq}/cm² with 10μ m pitch ($2x10^{12}$ n_{eq}/cm² with 20μ m pitch). - Spatial resolution 1-5 μm (pitch and charge-encoding dependent). - Macroscopic sensors (Ex. MIMOSA-5: 1.7 x 1.7 mm², 10⁶ pixels). - Used in beam telescopes and VTX demonstrators (EUDET, TAPI, STAR, CBM). ### Mimosa-26 #### Fast full scale sensors: ~10kFrame/s column parallel architecture + integrated zero-suppression (prototyping with MIMOSA-22 for binary output + SUZE-01 for \emptyset) - Binary output (3.5 4 μm spatial resolution). - Power dissipated ~280 mW/cm² (rolling shutter). 21.5 mm It was tested extensively in the laboratory: performances as expected ## **EUDET** beam telescope #### Reference planes of EUDET Beam Telescope - Supported by EU FP6. - Infrastructure to support the ILC detector R&D. - Specifications: - Extrapolated resolution <2 μm. - Sensor area ~2 cm². - Read-out speed ~ 10 kframe/s. - Up to 10⁶ hits/s/cm². #### Commissioning @ CERN-SPS last year: - BT completely equipped with MIMOSA-26. - Residuals compatible with σ = 4 μ m. www.eudet.org VCI 2010 6 ## Preliminary beam test results - TAPI = IPHC-Strasbourg BT for MIMOSA development. - Test @ CERN-SPS (120 GeV π beam). - 6 MIMOSA-26 sensors running simultaneously at nominal speed (80 MHz). - 3 x 10⁶ triggers. ϵ = 99.5 ± 0.1 (stat.) ± 0.3 (prel.) % @ fake hit rate O(10⁻⁴) ## Mimosa-26 architecture: evolutions #### STAR @ RHIC Heavy Flavour Tracker - 1152 x 1024 pixels; 200μs integration time. - Improved radiation tolerance. - Submission late 2010. - First data in 2013. #### CBM @ FAIR Micro Vertex Detector - Double sided readout. - 0.18 μm (40→20μs integration time). - Prototyping until 2012. Interest expressed by the ALICE collaboration for the upgrade in view of sLHC ## The ILD applications #### Physics requirements - single point resolution $\sim 3\mu m$. - integration time $25 100 \mu s$. - ... #### Extension for the outer VTX layers: • σ ~ 3 μ m: 4-5 bits ADC and a ~ 35 μ m pitch (r.o. ~100 μ s). #### For the inner layers: - ~ 15 μ m pitch \rightarrow binary readout. - Double-sided r.o. \rightarrow r.o. \sim 50 μ s. - Smaller feature size \rightarrow 35 40 μ s. - Double sided ladders \rightarrow << 35 μ s. ## System integration: the PLUME project - Pixel Ladder with Ultra-low Material Embedding. - Bristol DESY Oxford Strasbourg. - Double sided ladder equipped with 2x6 MIMOSA-26 (ILC DBD 2012). - $0.2 0.3 \% X_0$. - Explore feasibility, performances and added value of double-sided ladders. - Allows for improved time resolution (outer layer with longer and fewer pixels). - First prototype (reduced scale) tested at CERN-SPS last November. - Double sided ladder prototype expected in 2012. - Use of infrastructures foreseen in AIDA (FP7 project in preparation). ## System integration: SERWIETE - SEnsor Row Wrapped In Extra-Thin Envelope (HP 2 Project). - Frankfurt Darmstadt Strasbourg. - Sensors wrapped in thin polymerised film. - <0.15% X_0 expected for sensor (35 μ m thin) \oplus flex \oplus film (no mechanical support). - May match cylindrical surfaces. - Proof of principle in 2012. Proto 1 ⊳ Spring 2010 Proto 2 ⊳ Summer 2011 ## Further developments: high resistivity epi layer High resistivity epitaxial layer (O(10³) Ω ·cm) \Rightarrow depleted sensitive volume! - Faster readout. - Improved radiation tolerance. Exploration of the technology: MIMOSA-25 (0.6 μm) - Fabricated in 2008 and tested at CERN-SPS before and after irradiation. - Cluster size ~ 2×2 pixels (3×3 for low resistivity epi-layer). - S/N ~ 60 for seed (20-25 for low resistivity epi-layer ~ 30 @ $3 \cdot 10^{13} n_{eq}/cm^2$). - ε = 99.9% (99.5% @ 3 · 10¹³n_{eq}/cm²). - Improved tolerance to non-ionizing radiation (1-2 OoM). New VDSM technology under study in collaboration with CERN for sLHC ## MIMOSA-26 with high resistivity epi layer **NEW!** MIMOSA-26 high res.(400 Ω ·cm) 0.35 μ m presently under test (for STAR-HFT) *VCI 2010* 13 ## Further developments: 3D #### Benefits: - · Increase integrated processing. - 100% sensitive area. - Select best process per layer task. #### To be assessed: - Material budget? - Power dissipation? #### **Example** - Tier1: charge collection. - Tier2: analog signal processing. - Tier3: digital signal processing. - Tier4: data transfer. FNAL + IN2P3 + INFN + ... consortium (3DIC) First chips (2-Tier 130nm technology) being fabricated VCI 2010 14 ## Summary and future perspectives #### **Current CMOS sensors** - Mature technology for real scale applications. - High resolution, very low material budget. First full scale sensor with high read-out speed: MIMOSA-26. - Binary output + integrated zero-suppression. - Tested in laboratory and on beam. - EUDET-BT, STAR-HFT, ALICE tracker, CBM-MVD, ILD-VTX (option). System integration studies started: PLUME, SERWIETE, → Material budget << 0.5 % X₀ #### **New perspectives** Depleted sensitive volume: - Technology prototyped with MIMOSA-25. - MIMOSA-26 high res. under test. - Expectations: fast charge collection and non ionizing radiation tolerance > 10¹⁴n_{eq}/cm². 3D integration technology: - 4 CAIRN prototypes being produced (low power, few μs r.o., delayed readout with timestamp). - Heterogeneous chip (depleted sensitive volume). More information on http://www.iphc.cnrs.fr/-CMOS-ILC-.html