

Towards a 10 µs, thin high resolution pixelated CMOS sensor system for future vertex detectors

Rita De Masi IPHC-Strasbourg

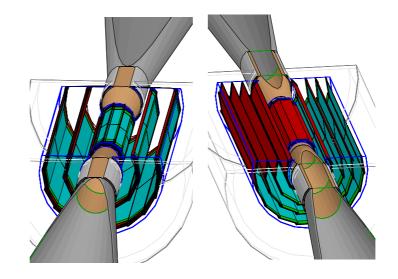
On behalf of the IPHC-IRFU collaboration

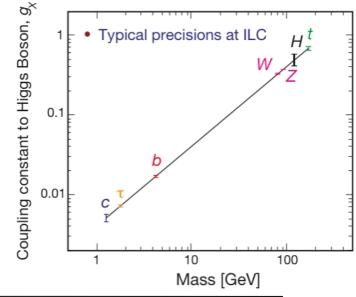
- Physics motivations.
- Principle of operation and performances.
- MIMOSA-26 and its applications.
- System integration.
- Developments.
- Summary and conclusions.

VCI 2010

A vertex detector for the ILC

VCI 2010


Two alternative geometries


- 5 single-sided layers.
- 3 double-sided layers.

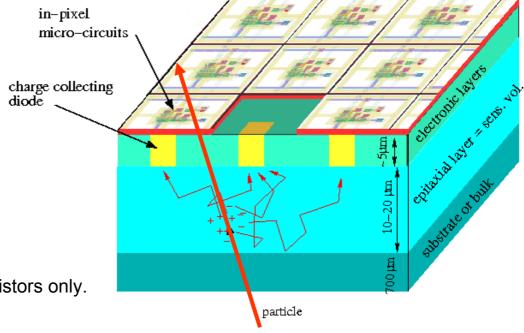
Sensor requirements

- Single point resolution ~ $3\mu m$.
- Material budget 0.16/0.11% X₀/layer.
- Integration time 25 100 μs.
- Radiation tolerance ~0.3MRad, few 10¹¹n_{eq}/cm².
- Averaged power dissipated << 100 W.

 σ_{IP} = a \oplus b/psin^{3/2}θ
a \leq 5μm, b \leq 10μm GeV
(a = 12μm, b = 70μm GeV @ LHC)

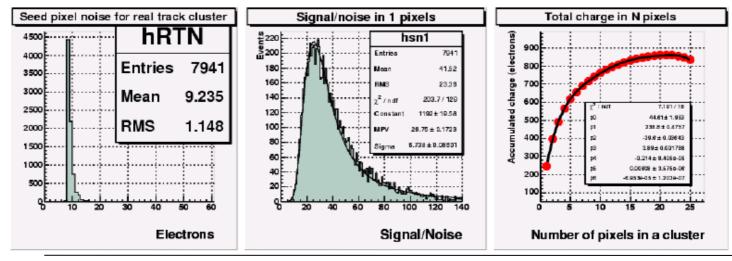
CMOS sensor principle

Signal collection


- Charges generated in epitaxial layer → ~1000 e- for MIP.
- Charge carriers propagate thermally.
- In-pixel charge to signal conversion.

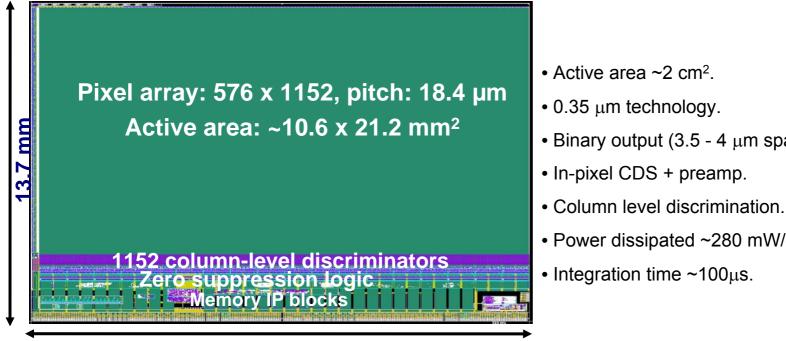
Advantages

- High granularity.
- Thickness (~O(50μm)).
- Integrated signal processing.


Issues

- Undepleted volume limitations .
 - radiation tolerance.
 - intrinsic speed.
- Small signal O(100e⁻)/pixel.
- In-pixel μ-circuits with NMOS transistors only.

Basic performances

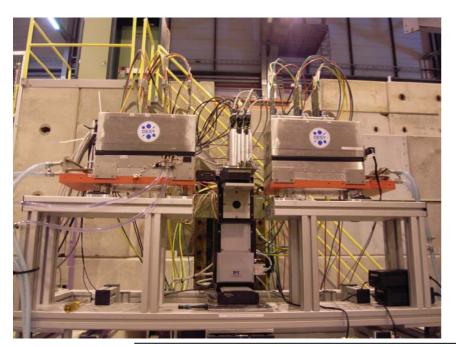

- More than 30 different sensors designed, fabricated and tested (lab & beam).
- Extensive use of 0.35μm CMOS technology.
- Room temperature operation.
- Noise ~10-15e-.
- S/N ~ 15-30.
- Detection efficiency ~100% @ fake hit rate O(10⁻⁴ -10⁻⁵).
- Radiation tol. > 1MRad and 10^{13} n_{eq}/cm² with 10μ m pitch ($2x10^{12}$ n_{eq}/cm² with 20μ m pitch).
- Spatial resolution 1-5 μm (pitch and charge-encoding dependent).
- Macroscopic sensors (Ex. MIMOSA-5: 1.7 x 1.7 mm², 10⁶ pixels).
- Used in beam telescopes and VTX demonstrators (EUDET, TAPI, STAR, CBM).

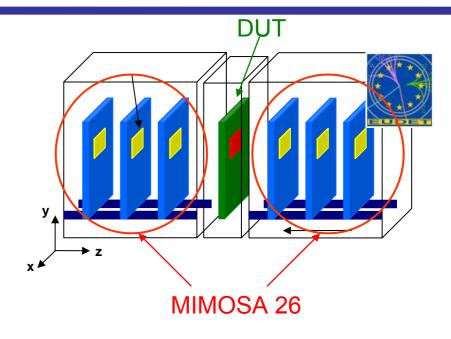
Mimosa-26

Fast full scale sensors: ~10kFrame/s

column parallel architecture + integrated zero-suppression (prototyping with MIMOSA-22 for binary output + SUZE-01 for \emptyset)

- Binary output (3.5 4 μm spatial resolution).
- Power dissipated ~280 mW/cm² (rolling shutter).


21.5 mm

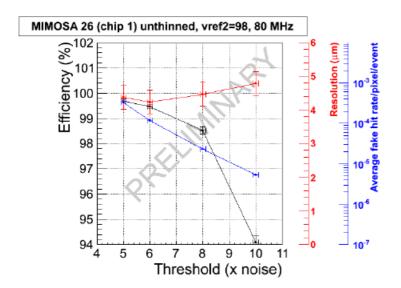

It was tested extensively in the laboratory: performances as expected

EUDET beam telescope

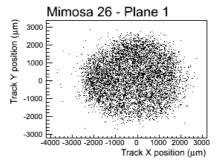
Reference planes of EUDET Beam Telescope

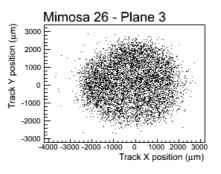
- Supported by EU FP6.
- Infrastructure to support the ILC detector R&D.
- Specifications:
 - Extrapolated resolution <2 μm.
 - Sensor area ~2 cm².
 - Read-out speed ~ 10 kframe/s.
 - Up to 10⁶ hits/s/cm².

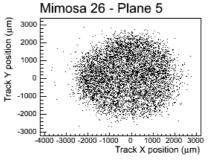
Commissioning @ CERN-SPS last year:

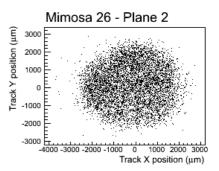

- BT completely equipped with MIMOSA-26.
- Residuals compatible with σ = 4 μ m.

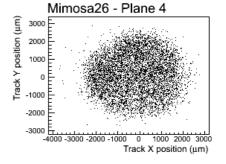
www.eudet.org

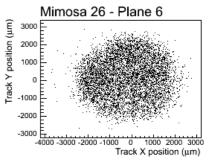

VCI 2010 6

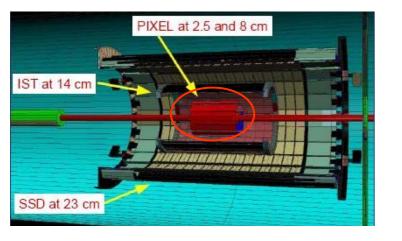

Preliminary beam test results


- TAPI = IPHC-Strasbourg BT for MIMOSA development.
- Test @ CERN-SPS (120 GeV π beam).
- 6 MIMOSA-26 sensors running simultaneously at nominal speed (80 MHz).
- 3 x 10⁶ triggers.

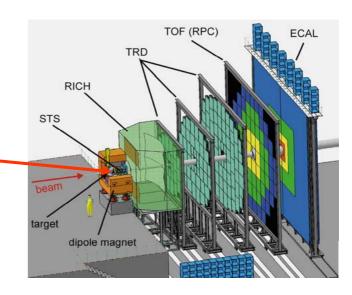



 ϵ = 99.5 ± 0.1 (stat.) ± 0.3 (prel.) % @ fake hit rate O(10⁻⁴)





Mimosa-26 architecture: evolutions



STAR @ RHIC Heavy Flavour Tracker

- 1152 x 1024 pixels; 200μs integration time.
- Improved radiation tolerance.
- Submission late 2010.
- First data in 2013.

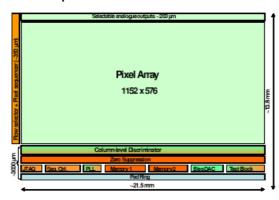
CBM @ FAIR Micro Vertex Detector

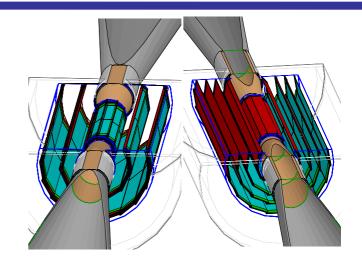
- Double sided readout.
- 0.18 μm (40→20μs integration time).
- Prototyping until 2012.

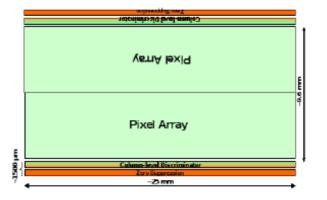
Interest expressed by the ALICE collaboration for the upgrade in view of sLHC

The ILD applications

Physics requirements

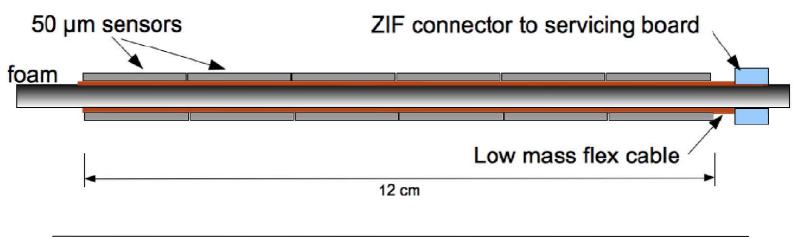

- single point resolution $\sim 3\mu m$.
- integration time $25 100 \mu s$.
- ...


Extension for the outer VTX layers:


• σ ~ 3 μ m: 4-5 bits ADC and a ~ 35 μ m pitch (r.o. ~100 μ s).

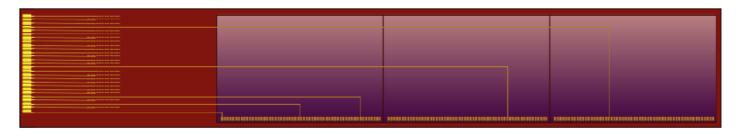
For the inner layers:

- ~ 15 μ m pitch \rightarrow binary readout.
- Double-sided r.o. \rightarrow r.o. \sim 50 μ s.
- Smaller feature size \rightarrow 35 40 μ s.
- Double sided ladders \rightarrow << 35 μ s.



System integration: the PLUME project

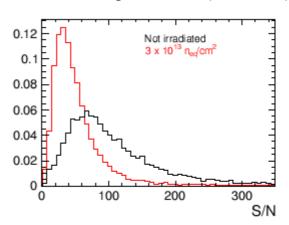
- Pixel Ladder with Ultra-low Material Embedding.
- Bristol DESY Oxford Strasbourg.
- Double sided ladder equipped with 2x6 MIMOSA-26 (ILC DBD 2012).
- $0.2 0.3 \% X_0$.
- Explore feasibility, performances and added value of double-sided ladders.
- Allows for improved time resolution (outer layer with longer and fewer pixels).
- First prototype (reduced scale) tested at CERN-SPS last November.
- Double sided ladder prototype expected in 2012.
- Use of infrastructures foreseen in AIDA (FP7 project in preparation).

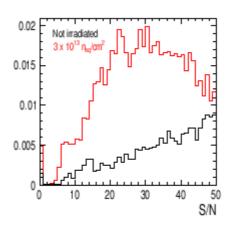

System integration: SERWIETE

- SEnsor Row Wrapped In Extra-Thin Envelope (HP 2 Project).
- Frankfurt Darmstadt Strasbourg.
- Sensors wrapped in thin polymerised film.
- <0.15% X_0 expected for sensor (35 μ m thin) \oplus flex \oplus film (no mechanical support).
- May match cylindrical surfaces.
- Proof of principle in 2012.

Proto 1 ⊳ Spring 2010

Proto 2 ⊳ Summer 2011

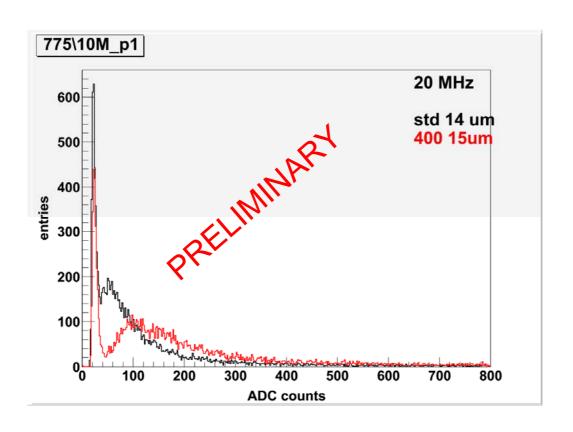

Further developments: high resistivity epi layer


High resistivity epitaxial layer (O(10³) Ω ·cm) \Rightarrow depleted sensitive volume!

- Faster readout.
- Improved radiation tolerance.

Exploration of the technology: MIMOSA-25 (0.6 μm)

- Fabricated in 2008 and tested at CERN-SPS before and after irradiation.
- Cluster size ~ 2×2 pixels (3×3 for low resistivity epi-layer).
- S/N ~ 60 for seed (20-25 for low resistivity epi-layer ~ 30 @ $3 \cdot 10^{13} n_{eq}/cm^2$).
- ε = 99.9% (99.5% @ 3 · 10¹³n_{eq}/cm²).
- Improved tolerance to non-ionizing radiation (1-2 OoM).



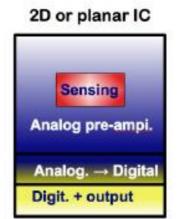
New VDSM technology under study in collaboration with CERN for sLHC

MIMOSA-26 with high resistivity epi layer

NEW!

MIMOSA-26 high res.(400 Ω ·cm) 0.35 μ m presently under test (for STAR-HFT)

VCI 2010 13


Further developments: 3D


Benefits:

- · Increase integrated processing.
- 100% sensitive area.
- Select best process per layer task.

To be assessed:

- Material budget?
- Power dissipation?

Example

- Tier1: charge collection.
- Tier2: analog signal processing.
- Tier3: digital signal processing.
- Tier4: data transfer.

FNAL + IN2P3 + INFN + ... consortium (3DIC)
First chips (2-Tier 130nm technology) being fabricated

VCI 2010 14

Summary and future perspectives

Current CMOS sensors

- Mature technology for real scale applications.
- High resolution, very low material budget.

First full scale sensor with high read-out speed: MIMOSA-26.

- Binary output + integrated zero-suppression.
- Tested in laboratory and on beam.
- EUDET-BT, STAR-HFT, ALICE tracker, CBM-MVD, ILD-VTX (option).

System integration studies started: PLUME, SERWIETE, → Material budget << 0.5 % X₀

New perspectives

Depleted sensitive volume:

- Technology prototyped with MIMOSA-25.
- MIMOSA-26 high res. under test.
- Expectations: fast charge collection and non ionizing radiation tolerance > 10¹⁴n_{eq}/cm².

3D integration technology:

- 4 CAIRN prototypes being produced (low power, few μs r.o., delayed readout with timestamp).
- Heterogeneous chip (depleted sensitive volume).

More information on

http://www.iphc.cnrs.fr/-CMOS-ILC-.html