Tests of a Silicon Photomultiplier Module for Detection of Cherenkov Photons

H. Chagani, R. Dolenec, S. Korpar, P. Križan, R. Pestotnik, A. Stanovnik

Jožef Stefan Institute, Ljubljana, Slovenia Faculty of Mathematics and Physics, University of Ljubljana, Slovenia Faculty of Electrical Engineering, University of Ljubljana, Slovenia Faculty of Chemistry and Chemical Engineering, University of Maribor, Slovenia

> The 12th Vienna Conference on Instrumentation Feb 18, 2010

Outline

- Motivation BELLE II PID upgrade
- Silicon Photomultiplier (SiPM)
- Array of 8×8 SiPMs
- Beam tests in CERN
- Light guides
- Results with light guides
- Summary

BELLE II PID upgrade

- $4\sigma K/\pi$ separation at 4GeV/c
- proximity focusing RICH with aerogels in focusing configuration
- photon detector requirements:
 - single photons
 - high efficiency at $\lambda > 350$ nm
 - operation in high magnetic field (1.5T)
 - pad size ~ 5-6mm

Silicon PhotoMultiplier

- SiPM
 - an array of APDs operating in Geiger mode
 - low operation voltage (10-100V)
 - gain ~ 10⁶
 - peak PDE ~ 65% @400nm [Hamamatsu] (incl. geom. efficiency)
 - time resolution ~ 100ps
 - works perfectly in high magnetic field
 - dark counts ~ few 100kHz/mm²

SiPM: Problems in Cherenkov photon detection

- dark noise signals have same height as single photon signals
- signal to noise ratio can be improved:
 - select only signals inside small time window
 - collect more photons per SiPM with light guides

Proof of principle: cosmic ray test, published in NIM A594 (2008) 13.

Array of 8×8 SiPMs

- 64 Hamamatsu S10362-11-100P SMD MPPCs
 - 100µm cell size
 - 1×1mm² active surface
 - 0.3mm epoxy layer above active area
 - dark noise ~ 600kHz/SiPM
 - blocks of 2×2 MPPCs added into single channel
 → 16 readout channels
 - pad active area: 4mm²/pad size: 5.08×5.08mm²
 - \rightarrow pad geometric acceptance: **15.5**%

1 pad consisting of 2×2 SiPMs

Beam test at CERN

- +120GeV/c pions
- scintillator for timing
- 2 MWPC with delay line readout for tracking
- multi hit TDC
- aerogel n=1.03, d=10mm, attenuation length=14mm, distance to photon detector 115mm

Rok Dolenec Jožef Stefan Institute

Results

- total noise rate ~600kHz/MPPC = 35MHz .
- hits in 5ns time window around the peak \rightarrow Cherenkov angle analysis
 - SiPM noise background obtained from off-time window
 - background subtracted from on-time distribution

for Detection of Cherenkov Photons

Jožef Stefan Institute

Results

- background subtracted distributions in Cherenkov angle
 - resolution ~ 14mrad
 - photons/ring: 1.6

- concentrate light from larger surface
 - increase number of detected photons per single sensor
 - dark count remains the same
 - improve signal to noise ratio

- concentrate light onto smaller surface
 → increases angular spread
 - limits the angular acceptance (loss of total reflection in light guide)
 - light exiting light guide under large angles misses SiPM active surface (gap between LG exit and SiPM active surface)
- light guide geometry must be optimized for a given inbound light angular distribution
- RICH: $\theta_{ch} \sim 18^{\circ} \rightarrow$ should be OK

- most suitable/feasible to manufacture: truncated pyramid
 - machined out of HERA-B RICH lens (near UV transmission)
 - conical drills angled at 10° and 15°
- optical simulation:
 - refraction
 - total reflection
 - gap (epoxy layer) between LG exit and SiPM surface
 - inbound light uniformly distributed over entry surface and isotropically in angle (between 0° and 30°)
 - not included: absorption, imperfect surface

Jožef Stefan Institute

Light guides for 8×8 SiPM array

- geometry constraints:
 - fixed pitch \rightarrow entry surface (2.54×2.54mm²) —
 - fixed side angle (10° drill) —
 - gap fixed at 0.3mm
- only variable \rightarrow length (d)
- optimization: d=4mm \rightarrow acceptance=65% .

Tests of a Silicon Photomultiplier Module for Detection of Cherenkov Photons

Rok Dolenec Jožef Stefan Institute

d=3.0mm

Light guides for 8×8 SiPM array

Light guides for 8×8 SiPM array

- array of light guides machined from HERA-B RICH lens material
 - 8×8 array with pitch 2.54mm
 - 3.5× photons expected

Tests of a Silicon Photomultiplier Module for Detection of Cherenkov Photons

Beam test - Results

- time distribution of hits
- clear improvement of signal to noise ratio with light guides

Results

- background subtracted distributions in Cherenkov angle
 - photons/ring w/o light guides: 1.6
 - photons/ring with light guides: 3.7
 - ratio of photons detected with and w/o light guides: 2.3

Tests of a Silicon Photomultiplier Module for Detection of Cherenkov Photons

Results

• rings in Cherenkov angle space

w/o light guides

Tests of a Silicon Photomultiplier Module for Detection of Cherenkov Photons

Summary

- a module of 64 SiPMs was tested in beam as a photon detector in RICH
 - dark noise suppressed by accepting only hits within 5ns window
 - detected 1.6 photons per ring
- light guides were used to improve signal to noise ratio
 - detected 3.7 photons per ring
 - improvement by $2.3 \times$ is less than expected $3.5 \times$ from simulations
 - light guide sides not polished
 - light guide exit surfaces not perfectly aligned with SiPM active surfaces
- this would be improved in the final detector:
 - use 30mm of aerogel with n=1.05 and better light attenuation length $(5 \times)$
 - improve light guide production and coupling to SiPMs (2×)
- expect ~ 30 photons per ring

We have shown that SiPMs are excellent sensor for RICH counters

Backup slides

SiPMs: expected number of photons

 Expected number of photons for aerogel RICH with multianode PMTs or SiPMS(HC100) and aerogel radiator: thickness 2.5cm, n=1.45, transmission length (@400nm) 4cm: N_{siPM}/N_{PMT}~ 5

• Expected number of photons per ring for CERN beam test: 2.3 (w/o LG)

Cosmic tests

Cosmic tests

Cherenkov photons appear within expected time window → First Cherenkov photons observed with SiPMs