

Status of Aerogel Radiator with High Refractive Indices

12th VIENNA CONFERENCE **ON INSTRUMENTATION** FEB 15-20, 2010

Makoto Tabata^{1,2}, Ichiro Adachi³, Hideyuki Kawai², Takayuki Sumiyoshi⁴, Hiroshi Yokogawa⁵ **BELLE II Aerogel RICH R&D Group**

¹Japan Aerospace Exploration Agency (JAXA), Sagamihara, Japan, ²Chiba University, Chiba, Japan, ³High Energy Accelerator Research Organization (KEK), Tsukuba, Japan, ⁴Tokyo Metropolitan University, Tokyo, Japan, ⁵Panasonic Electric Works Co., Ltd., Osaka, Japan

• highly transparent \rightarrow not only threshold but also ring imaging type Cherenkov counter • hydrophobic \rightarrow maintenance free

- Production process
 - 1. Alcogel (wet gel) synthesis
- 2. Aging
- 3. Pinhole drying
 - enclose the alcogel in a semi-sealed container
 - solvent evaporation from the alcogel body
 - shrinkage of the alcogel and increase in density (one week – a few months)
- 4. Solvent displacement (ethanol immersion)
- 5. Hydrophobic treatment
- 6. Rinse (ethanol immersion)
- 7. CO₂ supercritical drying
- Refractive index control \rightarrow (A) + (B) (A) Mixing ratio of raw chemical solutions

(B) Degree of the pinhole drying (shrinkage)

Optical Quality of PD-aerogel - Transmission Length and Transmittance -

Initial alcogel selection

Solvent of synthesis

• methanol \rightarrow fast production

 N,N-dimethylformamide (DMF) → high transparency Initial refractive index

- high refractive index $(n_0 \sim 1.06) \rightarrow$ fast production
- low refractive index $(n_0 \sim 1.05) \rightarrow$ high transparency

Test production (3 patterns of initial alcogel selections)

• DMF solvent, $n_0 = 1.049 \rightarrow n = 1.051 - 1.074$ • DMF solvent, $n_0 = 1.065 \rightarrow n = 1.10 - 1.26$

• methanol solvent, $n_0 = 1.059 \rightarrow n = 1.10 - 1.23$

Performance of PD-aerogel

– Beam Test Results –

• @KEK Fuji Test Beam Line (FTBL) in Nov. 2009 • 2 GeV/c electron beams

• Aerogel based Ring Imaging CHerenkov (A-RICH) counter prototype of a new PID detector for the BELLE II

Middle refractive index : 2cm x 2 layer focusing configuration

Aerogel configuration (refractive index)	Angular resolution (per single photon)	Photon yield (N _{p.e.})	Angular resolution (per track)	π/K separation @4GeV/c
1.046 + 1.055	14.5 mrad	9.2	4.8 mrad	4.7σ
1.045 + 1.051(PD)	15.3 mrad	12.1	4.4 mrad	5.3σ
1.051(PD) +1.059(PD)	14.8 mrad	13.6	4.0 mrad	5.4σ

(Ultra-) high refractive index : 1cm single layer

Summary

• New production method of silica aerogel has been developed: Pinhole Drying (PD) method. • Refractive index of aerogel is controlled in a range of up to 1.26 by the PD method. • The PD method can produce highly transparent aerogel (a transmission length of up to 60 mm). • Performance of PD-aerogel as a Cherenkov radiator has been demonstrated by the beam test. • PD-aerogel will be utilized in the next generation of particle and nuclear experiments: KEK BELLE II (n~1.06), J-PARC 50 GeV PS P03(E03) (n=1.12) and P29 (n~1.20).

References

• M. Tabata et al., Proc. Nucl. Sci. Symp. IEEE 2005, p.816. • I. Adachi, et al., Nucl. Instr. and Meth. A 553 (2005) 146. • I. Adachi, et al., Nucl. Instr. and Meth. A 581 (2007) 415. • I. Adachi, et al., Nucl. Instr. and Meth. A 595 (2008) 180. • S. Nishida, et al., Nucl. Instr. and Meth. A 610 (2009) 65. • S. Shiizuka, et al., talk in this conference.