Fabrication and performance test of the silicon photo-strip detector coupled with a crystal scintillator

D. H. Kah*, J. B. Bae, H. J. Hyun, H. J. Kim, H. O. Kim, H. Park

(akah@knu.ac.kr)

Department of Physics, Kyungpook National University, Daegu 702-701, KOREA

We develop a silicon photodetector coupled with a crystal scintillator. The silicon photo-strip detector consists of a single crystal and two silicon photo-strip sensors. The photo-strip sensor is designed and fabricated based on concept of a AC-coupled single-sided silicon strip sensor but the incident layer of the strip sensor is modified to detect scintillation light. The two photo-strip sensors sandwiching opposite face of one crystal scintillator are oriented orthogonal to each other. When a particle enters a crystal, the scintillation light is emitted and converted into electronic signals in the silicon photo-strip sensors. This detector configuration provides the two-dimensional position information and a depth of interaction by measuring signal ratios between the first and second photo-strip sensors. This detector concept can be applied in radiation, medical applications and nuclear medical cameras.

- One crystal scintillator + two photo-strip sensors
- Two sensors sandwiching opposite faces of a scintillator are oriented orthogonal to each other
- The detector provides position information in x, y, z coordinate
- A depth of interaction by measuring signal ratios between the first and second photo-strip sensors
- The device may be applied in radiation application, medical application, and nuclear medical cameras

Electrical characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current (nA)</td>
<td>50 ± 10</td>
</tr>
<tr>
<td>Threshold voltage (V)</td>
<td>1 V</td>
</tr>
<tr>
<td>Dynamic range (V)</td>
<td>10 V</td>
</tr>
<tr>
<td>Capacitance (pF)</td>
<td>50 ± 10</td>
</tr>
<tr>
<td>Gain</td>
<td>200</td>
</tr>
</tbody>
</table>

Spectral response of the PIN photodiode

- Silicon PIN photodiode (1.0 mm x 1.0 mm)
- Quantum efficiency (%)
 - 400 nm: 45%
 - 500 nm: 55%
 - 600 nm: 65%

Photometry

- LED - 850 nm: 65 nm > 95% QE
- LED - 950 nm: 60% QE

Performance test results of the photo-strip sensor with readout electronics

- The photo-strip detector provides 2 dimensional position information
- From 2D position results, we can also obtain the interaction point of LED by position height distribution of two photo sensors
- Plan for imaging test with a (CaTl) crystal

Schematics of the electronics and Picture of the home-made DAQ board

Conception of detector

Conceptual drawing of the detector

Pictures of the Ca(Tl) coupled fabricated sensor on the hybrid board

Pulse height distributions with various radioactive sources

Reconstruction of 2D position information by using the LED source

Position reconstruction of the LED source

Silicon photo-strip sensors are developed

- Deep bulk 100/300 μm thickness
- PIN photodiode
- Fabricated sensors show good electrical characteristics
- Depletion voltage ~ 65V
- Leakage current ~ 24A/strip
- Sensors show good photosensitivity

Fabrication and performance test of the silicon photo-strip detector

Fabricated sensors show good electrical characteristics

- Energy resolution: 13.8% (611 keV, gamma-ray)
- The readout electronics is tested with the photo-strip sensor
- Energy resolution: 13.8% (611 keV, gamma-ray)
- The photo-strip detector provides 2 dimensional position information

Depletion voltage ~ 65V

Hybrid board

- Hybrid board
- Photo-strip sensor
- PIN photodiode
- Preamp
- FADC
- 4-channel trigger system
- Xilinx Virtex 4PX-200 FPGA
- Ethernet board

Readout electronics and DAQ system

Ethernet board

- ASDA: Analog signal detector
- Sense amplifier: 4-channel, gain: 1000
- ADC: 12-bit, 4-channel
- Ethernet board

PC

- Windows
- Xilinx ISE (10.1)
- Ethernet board
- Xilinx Virtex 4PX-200 FPGA
- Xilinx ISE (10.1)

Performance test with a Ca(Tl) crystal

- LED - 850 nm: 65 nm > 95% QE
- LED - 950 nm: 60% QE

Spectro-photometry test at Korea Research Institute of Standards and Science

- LED - 850 nm: 65 nm > 95% QE
- LED - 950 nm: 60% QE

Spectra-photometry

- LED - 850 nm: 65 nm > 95% QE
- LED - 950 nm: 60% QE

Performance test results with a Ca(Tl) crystal

- LED - 850 nm: 65 nm > 95% QE
- LED - 950 nm: 60% QE