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Cryogenic two-phase avalanche detectors: the concept

Electron avalanche Gas phase

WA |

Liquid phase:
He, Ne, Ar, Kr or Xe

Cryostat Radiation

The concept was introduced and realized in 2003 /Buzulutskov et al. IEEE Trans. Nucl.

sci. 50(2003)2491]  traditional two-phase emission detector + electron
avalanching in the gas phase using GEM multiplier




Motivation: dark matter search and
coherent neutrino-nucleus scattering experiments
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Ar'DM Two phase Ar' deTec'ror' usmg THGEM for' ___——j—-='5'—~
dark matter search [A.Rubbia et al., J. Phys. Conf. :_,: Two-phase Ar and Xe detectors using
Ser. 39(2006)129] — GEM/THGEM for coherent neutrino-nucleus
e = — scattering [ITEP & Budker INP: Akimov et al.
' : JINS 7' 4 (2009) P0O6010]

i

Need for de'rector' recording both |on|zahon and
scintillation signals with a threshold of <
keV (200 electrons)

Need for' noiseless (<O. 1 evenT/hour'/kg) detector
- with a threshold of 1 e (single- electron coun‘hng)




Motivation: PET applications

GEM-based two-phase Xe avalanche detector for PET: 3D liquid TPC
recording 511 keV y-rays, using GEM/THGEM. This will help to solve
parallax problem

and obtain superior (~1mm) spatial resolution.

[Budker INP: CRDF grant RP1-2550 (2003)]

Need for Xe detector with 3D readout recording both ionization and scintillation

signals with a threshold of > 100 keV (2000 electrons)



GEM-based two-phase avalanche detectors:
summary of previous results
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Recent results: Electron emission properties in two-phase systems

- Direct observation of both fast and slow electron emission components in Ar using

-_ fast GEM multiplier.
- - Disappearance of slow component in Ar+N, and its conversion to fast component.
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Recent results: thick-GEM (THGEM)-based
two-phase Ar avalanche detector
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Experimental setup: 2"d generation

cryogenic chamber'
I of Ilqmd Ar or Xe; 1 cm thick Ilqmd Iayer'
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We present the foIIowmg results per'for'med with this setup: —
1. SiPM performance at cryogenic T —
| 2. Two-phase Ar avalanche detector using THGEM+SiPM E
3. Cryogenic gaseous Xe avalanche detector using THGEM ==




Two-phase avalanche detector using Silicon PhotoMultiplier
(SlPM) ophcal readouf fr'om THGEM mul'l'lpluer' mo‘l'lvaﬂon
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- Need for noiseless self-triggered cryogenic two-phase detectors having single-
electron sensitivity, in particular for coherent neutrino-nucleus scattering
experiments.

- Gains reached in GEM/THGEM-based two-phase avalanche detectors, <104,
might not be enough for operation in single electron counting mode at self- —
triggering. Accordingly, high SiPM gain would substantially increase the overall
gain providing effective single-electron counting, at reduced THGEM gain and
correspondingly at reduced noises.

- Multi-channel optical readout is preferable in terms of noise suppression,
compared to charge readout, since it would enable to obtain coincidences between —=
channels. =

- SiPM performance at cryogenic T is superior to that of room T.

~ Earlier studies in Sheffield [nghffoaf et al. JINST 4 (2009) PO4002]:
SiPM readout from THGEM in two-phase Ar using TPB wavelength shifter
— provided 200 pe from SiPM at THGEM gain=100 for 6 keV X-rays.
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Experimental setup:
THGEM+SiPM based two-phase Ar detector

THGEM readout: charge-sensitive preamplifier + shaping
amplifier at shaping time 0.5 or 10 us with overall sensitivity
- 10 v/pC.
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- SiPM readout: fast amplifier CPTA with
3 ns pulse rise (300 MHz bandwidth) and
amplification factor 30.

z Both amplifiers were placed outside the chamber and
2 connected via 1 m long wires: a challenge to minimize
c THGEMI < electronic noise (pick-ups and self-generation).
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Exper'lmem'al setup: THGEM+SiPM in two- phase Ar

SlPMs optimized for green-re specTrum r'ange
From left to right:

- CPTA 149-35, 4.41 mm?, 1764 pixels (4 mm out of

frame center);

- CPTA 143-22, 0.95 mm?, 556 pixels:

¢ - Pulsar, 1 mm?2.

THGEM (from Weizmann Inst.):
610 plate
thickness 0.4 mm
hole pitch 0.9 mm
= hole diameter 0.5 mm
—~ hole rim 0.1 mm

SiPMs were not coated with WLS.




Gas Ar emission spectrum and SiPM QE in near infrared

It was believed that Ar scintillations take place mostly in the VUV region, peaked at 127 nm. This
results in necessity to use wavelength shifter (WLS) coatings. On the other hand, in 2000 it was

~ shown by Coimbra group [Fraga et al.] that Ar has effective avalanche scintillations in NIR region,
at 750-850 nm. In this region SiPM can have rather high quantum efficiency, reaching 20%,
providing direct and effective detection of scintillations without using WLS.
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— NIR emission spectrum of pure Ar (due to

- Ar I atomic lines) from avalanche

* scintillations at 750 Torr, gain~30,

- yield~1ph/e.

[M.M.Fraga et al. IEEE Trans.Nucl.Sci. 47(2000)933]




SiPM (4.4 mm?) performance at cryogenic temperatures
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SiPM (4.4 mm?) performance at cryogenic temperatures:
cryogenic T vs. room T
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~ Noise signals: at 87K and room T, both in gain saturation mode, at46 -
= and 41 V respectively. Single pixel amplitude at 87K is ~4 times larger |
compared to room T.
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= Conclusion: ==
~ SiPM performance at cryogenic T is superior to that of room T in ==
- terms of the maximum gain, noise rate and amplitude resolution.



SiPM (4.4 mm?) performance at cryogenic temperatures:
i smgle plxel charactemshcs at 87K

Examples of SIPM sugnals havmg 1- plxel and 3 plxel ampll'rude
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V(SIPM)=44V
Self-triggering at 12 mV

In conditions optimized to have the highest amplitude from SiPM at
fast amplifier output, the signal is bipolar. This fast signal was
transformed into unipolar signal (with a shaping time of ~100 ns):
the area of the latter provided the integral amplitude of the SiPM
~ signal. This technique permitted to calculate the total amplitude of
long signals consisting of multiple short pulses separated in time.
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Gain

THGEM performance in two-phase Ar

1000 | THGEM gain, Two-phase Ar, 87K, 1.0atm 3
C Pulsed X-rays, E(LAr)=1.92kV/cm .
[ Shaping time 10ps

100 ¢ 2THGEM -
: AV(THGEM1)=1.82kV ]
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High THGEM gais, reaching 1500, were obtained i
two-phase Ar.

Asymmetrical mode of operation of double-THGEM multiplier was chosen, with
fixed first THGEM voltage corresponding to gain of 2, the second THGEM gain
being varied. This provides the effective collection of the ionization into the first
THGEM holes, at the same time providing the SiPM to be sensitive to avalanche
scintillations essentially from the second THGEM. The latter facilitates

interpretation of the results.

For'X-r'as from 241Am, the energy deosi‘te in the
liquid typically corresponded to 60 keV peak, provided by
high enough trigger threshold.
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Avalanche-induced scintillations using THGEM+SiPM readout

We have obser'ved avalcmche-mduced scmﬂlla'rlons in Ar'
both in two-phase mode and at room T, using THGEMs
!and SiPMs, the latter not coated with WLS i.e.
= insensitive in VUV and UV.

Accor'dingly the scintillations recorded most probably
Takeplace in NIR

An example of 60 keV X-r'ay mduced sugnals
S IR —— T in two-phase Ar at 2THGEM gain~1000,
- == 10 obtained using lmmZSiPM(PuIsar).

-+ . 1 In the following the data obtained
/N [theem | g will only be considered.

M 200ps T25MSE  5.0ns4t
& ChZ o 150mY




Scintillation-ionization (SiPM vs. THGEM) signal
time correlation : selected signals
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M20Ops 125654  G00psAt

Chi S0.0mY & Chz 200y M 1.0ps 2 5G5S 400pzipt A Chl o~ S4.0mY
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Gaseous Ar, room T, latm. Pulsed X-
rays. 2THGEM gain=18. Selected to have
primary ionization clusters separated in
time. THGEM signal at room T is
relatively fast compared to two-phase
Ar. Time correlation between ionization
(THGEM) and scintillation (SiPM) signals
is distinctly seen.

Two-phase Ar, 87K, latm. 60 keV X-rays.
~ 2THGEM gain=400. Selected to have spikes.



Scintillation-ionization (SiPM vs. THGEM) signal
~ amplitude correlation in two-phase Ar

60 keV X-ray-induced signals at 2THGEM gain=400. The correlation between SiPM
and THGEM total signal amplitudes is seen.

SiPM vs 2THGEM —

Two-phase Ar. 87K. 1 0atm SiPM amplitude is expressed in

* Am X-rays photoelectrons: the total SiPM

E(LAn=1 8KV/em amplitude was integrated over ~20

- Gain(2THGEM)=400 us and then normalized to SiPM
single pixel amplitude.

THGEM amplitude is expressed in
initial (prior to multiplication)
electrons.
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Pulse-shape analysis in two-phase Ar: typical signals

Fast SiPM signal provides an effective means to study electron emission and avalanche
mechanism by analyzing avalanche time structure.

60 keV X-ray-induced signals at 2THGEM gain=400 and electric field in liquid Ar of 1.8
kV/cm. Typical SiPM signal has a pulse spike at the beginning, induced by fast electron
emission component, and a tail due to slow emission component, sometimes modulated by
ion feedback-induced secondary avalanches.

s I s

0.4 : : : 0.6 , , , ,
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Pulse-shape analysis in Two-phase Ar: SiPM averaged signal

60 keV X -ray- mduced sugnals at 2THGEM gain=400. Aver'aged SlPM sugnal has a pulse
spike at the beginning, induced by fast electron emission component, and a tail due to
slow emission component (with t~5 ps), modulated by two cycles of ion feedback. The ion
feedback cycle is 1 2 us cor'r'espondmg to ion drlf‘r 1'|me 'rhough THGEM hole.

Averaged SiPM signal resembles
that obtained earlier in two-
phase Ar using fast GEM
multiplier at similar emission

Averaged over 100 events
SiPM
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Scintillation signal amplitude distribution in two-phase Ar.
THGEM+SiPM multiplier yield.

50k

T T T T
SiPM signal from 2THGEM, Two-phase Ar, 87K, 1.0atm
' Am X-ray spectrum, E(LAr)=1.8kV/cm
Gain(2THGEM)=400
AV(THGEMI1)=1.82kV, AV(THGEM2)=2.48kV
2THGEM-triggering at 78mV and shaping time 0.5us
V(SiPM)=44V

<A>=710pe

1000 2000 4000 R
SiPM amplitude (pe) ="

<SiPM amplitude> at gain=400 is 710 pe for 60 keV X-ray deposited in the liquid,
producing about 900 initial electrons, i.e. prior multiplication in the gas phase.

At this particular gain (400) and geometry (4mm? SiPM at 4mm distance from THGEM2)

> THGEM+SiPM multiplier yield:
y2THGEM+SiPM = 0.80 pe/iﬂitial e

<AQgppy/4n> (with respect to THGEM2) = 2.5*10-3
- Yield in 4x per unit THGEM gain:
ySiPM =12 pe/keV




Scintillation/ionization signal ratio distribution
_in two-phase Ar. Light yield. | |
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* Am Xerays, E(LAr)=1.8kV/em — SiPM/THGEM distribution reflects
Gain(2THGEM)=400 that of the solid angle of SiPM with
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g 2THGEM-triggering at 80mV and shaping time 10pus _ P
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SiIPM/2THGEM amplitude ratio (pe/e)

At gain=400:
<SiPM/2THGEM> = 2.0*10-3 pe/e . > Light yield from an avalanche:
Photoelectron yield per avalanche electron in 4n for this particular SiPM :

Ype = 0.84 pe/e .
NIR photon yield per avalanche electron in 4n (taking QE=15%) :
Yon = 5.4 ph/e .




THGEM+SiPM vs. THGEM+WLS+SiPM
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In two-phase Ar using THGEM+SiPM, we have the following yield in 4x
per unit THGEM gain:
Ysirm = 12 pe/keV

In two-phase Ar using THGEM+WLS+SiPM, Sheffield had sightfoot et al.
JINST 4 (2009) PO4002]

ySiPM =6.5 pe/keV

Accordingly, in two-phase Ar avalanche detectors, NIR-sensitive SiPMs
(not coated with WLS) provide at least the same yield as that of
VUV -sensitive SiPMs (coated with WLS).




Cryogenic gaseous Xe avalanche detector using THGEM

£ I E E
F Gaseous Xe ] - C ;{;HG
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= Pulsed X-rays Gaseous Xe
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Double-THGEM performance in saturated

Stable operation of single-THGEM in Xe vapour. Maximum gains might not be
gaseous Xe at cryogenic temperatures reached: were limited due to HV

~ feedthrough problem




Conclusions
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1. GEM- and THGEM-based two-phase avalanche
detectors show good performance in Ar.

2. SiPM performance at cryogenic T is superior to that of
room T.

3. Two-phase avalanche detectors with THGEM+SiPM
readout (SiPM being not coated with WLS) show excellent
performance.

4. THGEM multiplier is capable to operate in gaseous Xe at
cryogenic T.

5. Such detectors may find applications in the field of
‘rare-event experiments and PET_' - -

— — — - — il e . . il e . il e .



Spare slides



Gas electron multiplier (GEM):
“standard” GEM and thick GEM (THGEM)
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Typlcal sTandar‘d GEM dielec'rr'lc = Typlcal fhnck GEM: dlelectmc (610)
~ (kapton) thickness 50 um, hole pitch ' thickness 0.40 mm, hole pitch 0.9 mm,
— 140 pm, hole diameter 55 um in - hole diameter 0.5 mm in dielectric and
— dielectric and 70 pm in metal =— 0.7 mm in metal
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Experimental setups with 2.5 | cryogenic chamber (2003-2008)
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Pulse-shape analysis in two-phase Ar:
~ SiPM signal 1'|me hls'roqr'am
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e e S . € Only negative part of SiPM bipolar
e e signal is recorded in time hls'rogr-am
‘ ) ) W T SiPM signal tune spectra
SIPM signal time spectra - Two-phase Ar, 87K, 1.0atm
10k | Two-phase Ar, 87K, 10atm | [N G 10k |- V(SIPM)=44V E
[ \-"(?}212»1?:‘44\* 1 k - 2THGEM triggering at 60mV 1
Pulsed X-rays = —e e — " and shaping tume 0.5 us
e . Sy, 60 keV X-rays from *Am
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No difference in SiPM signal time —_—— e

di.S*f'ibUﬁ.O". bengen gain 4 and 60. B At hlgher' gains (400) 'rhe sugnal becomes
Signal tail is defined by slow electron -_--:—- wider extending to that with t~7 ps,
emission component in two-phase Ar  E== ,41tiglly due to ion feedback-induced

with decay time t~5 ps (at electric =iz avalanches
field in liquid Ar of 1.8 kV/cm). e



