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Outline:

® Proton Therapy status
® Need for detectors — clinical specs

® GEMs in dose profile measurements — basic principles,

detector design
® Electronic readout — test results

® Optical readout — test results

Summary




PROTON THERAPY COMMUNITY IS GROWING FAST

Institution Country Particle Energy Beam lines date

PSI, Villigen Switzerland p 250 MeV Cyclotron New gantry + horiz fixed beam 2009

UPenn, PA USA p 230 MeV Cyclotron 4 gantries, 1 horiz. beam 2010

430 MeV/u
synchrotron

430 MeV/u
synchrotron

CNAO, Pavia Italy 1 gantry? 3 horiz. 1 vertical 20107

HIT, Heidelberg Germany 1 gantry (C-ions), 2 fixed beams 2010

WPE, Essen Germany 230 MeV cyclotron 3 gantries, 1 horiz beam. 2010

CPO, Orsay France 230 MeV cyclotron 1 gantry, 4 horiz beams 2010

3 horiz. fixed beams ,1 45 deg
fixed beam

PTC, Marburg Germany . 430MeV/u synchrotron 2010

Chang Gung Hospital Taiwan 230 MeV cyclotron 4 gantries, 1 experimental room 2011

Gunma University,
Maebashi

PCPTC, Chicago USA 230 MeV cyclotron 2 horiz., 2 dual fixed beams 2011
NIU, Chicago 250 MeV cyclotron 2 gantries 2 fixed beams 20117

90 deg fixed beam, 0 deg fixed

beam, 0+90 deg fixed beam AL

Japan -1 400MeV/u synchrotron

HUPBTC, Hampton, VA 230 MeV cyclotron 4 gantries 1 horiz. 2010

Pencil Beam Scanning (IMPT) technology refers to a method in which a small area beam.is'Swept laterally
across the tumor with dynamically varying lateral position, intensity and energy for.each spot (voxel) to
achieve a dose distribution that conforms exactly the tumor area. Dose distributions in IMPT are
characterized by high lateral and depth dose gradients. A typicalradiotherapy treatment requires several

hundred-Hz. voxel by voxel dose delivery-frequency. 8/‘
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Radiation detector clinical specifications

Dose deliver Position Timing Material in Other
method y Application resolution, | resolution, | beam, mm aram
mm ms water equiv. P
n/a, a). b)
On-line dose monitoring centering 100 <1 e
Passive beam +1% ol )
Sl Quality assurance, dose a), b),
: 1-2 500 n/a
profile measurements d), f)
. . a), b),
On-line dose monitoring 2-3 <1 <1
Uniform c), e)
scanning beam Quality assurance, dose 1.0 5 n/a a), b),
profile measurements d), f)
On-line d itorin 1 0.1 03 |20
IMPT/ Nn-line adose monitoring < <V. <V. C), e)
pencil beam ]
scanning Qualllty assurance, dose -1 01-5 n/a a), b),
profile measurements d), f)

Dose rate linearity - <1%

Response non-uniformity across the detector - <1%

Sensitive area ~30x30 cm?

a)
b)
c) Sensitive area ~20x20 cm?
d)
e)

Tissue equivalence in 70 — 250 MeV range - +0.1% CYCLOPS

f) _Tissue equivalence in 20 — 250 MeV range==+%

<

Alexander Klyachko, IUCF/IU CyOps, 12th VCI, Feb. 20, 2010



EMs (Sauli 1997) offer:

G

O fast performance

O robustness and design flexibility

O excellent spatial resolution

O cascade option to improve signal to noise ratio

O electronic and optical readout schemes

O various pickup electrode layouts in electronic
readout mode

U

10x10 cm? GEM foils from
Tech-Etch Corp, Plymouth, MA.

Up to 30x30 cm? foils are commercially
available, bigger foils could be produced
upon request

From: F. Sauli, Physics Reports,
2004. 403: p. 471-504
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Optical Readout of GEMs
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Fig. 8. Visible and NIR emission spectra of Ar—CF, mixtures,
From F.A.F. Fraga et al.,
NIM A513 (2003) 379
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Although the GEM has been mainly used as a
gaseous preamplifier device with electronic readout,
it is known that when suitable gaseous mixtures are
used, the avalanches emit a large number of
photons in the UV, visible, and/or near infrared (NIR)
bands. This scintillation, read out by CCD camera,
has been used for the development of imaging
detectors (PSI-Delft-Coimbra):

M.M.F.R. Fraga et al, The GEM scintillation in He-CF4,
Ar-CF4, Ar-TEA and Xe-TEA mixtures.

NIM A504 (2003) 88.

F.A.F. Fraga et al, Luminescence and imaging with gas
electron multipliers.

NIM A513 (2003) 379.

S. Fetal et al, Dose imaging in radiotherapy with an Ar-
CF4 filled scintillating GEM.

NIM A513 (2003) 42

E. Seravalli et al, 2D dosimetry in a protonibeam with a
scintillating GEM detector .

Phys. Med. Biol. 54 (2009):8755
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Electronic Readout

= Online beam monitoring (with
multi-pad anode), proton
tomography (cross-strip anode)

Fast

Moderate spatial resolution
limited by electronics cost

@ @
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dGEMI (GEM-based-Dose-Imaging Deteector)

Ontical Readout

Quality assurance, dose profile
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5 pa Coppe;r

50 pm Kapton

GEM foil being glued
to the frame in a
laminar flow enclosure
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Strip anode follows
COMPASS design:
400 ym pitch, strips
connected in groups
of ten to form 4 mm
readout pixel

Shown with resistive
voltage divider.—dater
replaced with individual
power supplies for each
stage
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Ar/CO, 70/30% vol.

Electronic Readout
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Strip Charge Collection Efficiency with *Fe
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Electron drift time in
the 5 mm drift gap is
estimated ~70 ns
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0-230 mm dGEM Markus
Acrylic Phantom Detector Chamber

240 cm 35cm
V'ﬁ

ICBM
(lonization Brass

Chamber Collimator

Beam Monitor)

Therapy
Dosimeter/
Picoampermeter

Markus ionization chamber (PTW, Model TN23343) with a 5.3 mm diameter active area and
NIST-traceable absolute calibration in absorbed dose to water.was used to estimate the dose  prewpr

rate. 3
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cleclronic readout
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Beam Image Measured with dGEM
2 mm Thick Spreader, Diameter 50 mm Collimator

Beam profile, Gafchromic film

Image and Profiles of 6 mm collimator Superimposed Images of 6 mm collimator
Detector Translated by 12 mm in X Direction

2 4 [} 8
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Beam Current (nA)

Lines are linear fits
to data in 0 - 110 Gy/m

in dose rate range
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dGEM Energy Response -

Bragg Peak
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s ’ SBIG ST-6 CCD Camera
Optlc‘al ! eadgut Santa Barbara Instrument Group

Gas mixture: Ar/CF, 95/5% Thermoelectric Peltier Cooling to -30°

O

Housing e
1 Transparent
1 Window

Markus
Chamber

(Recycling
Integrator)

CCD Camera
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Background Sources:

« Camera offset (bias level) - subtract

» Dark current (noise) - subtract

* Ambient light - subtract o

* Interactions of scattered beam and secondary | SR eI | e
particles with camera’s sensor — estimate <0.2% | i LA ’ }

- Scintillations in the detector gas and exit SR ‘ I ’
window caused by beam particles — estimate <0.7%

Dark frame, 3 s exposure

Estimates based on E. Seravalli ef al,
Phys. Med. Biol. 54 (2009) 3755




—

. R 8 Image of 20x1.6 mm collimator
— 5 nA beam current, 3 s exposure

—e— Signal
---- Peaks 1-3
—— Peaks Sum|

Spark, right before HV dropped

60

Distance along X-axis (mm)

Signal profile
along the single-pixel line above. CYCLOPS

The main peak has 0=0.7 mm. 8/‘
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5 nA beam current, 3 s exposure Same, re-pixilated




Beam image
(50 mm collimator, 6 cm of acrylic)
Yellow line — integration area

ImagedJ beam profile
(20 nA, %" collimator, 3 s exposure)
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Light Signal Intensity as a Function of Dose Rate

Beam Current, nA
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dGEM Energy Response -
Bragg Peak

Optical and Electronic Signal Bragg Peaks
Normalized at Entrance (Zero Acrylic Depth)

N

g
=)

-t
(3]

-t
o

0
=
c
E]
g
=
©
©
c
=2
w
T
@
N
]
£
=
[=]
=

e
o

— @ — Markus
— A& — dGEM Electronic
— ¥ — dGEM Optical

o
o

50 100 150 200
Water Equivalent Acrylic Thickness, mm

CYCLOPS

Alexander Kiyachko, IUCF/IU CyOps, 12" VCI, Feb. 20, 2010 S



Conclusions:

® We have developed a prototype detector system for two-dimensional
dose imaging in hadron therapy based on double-GEM amplification
structure, using either electronic or optical readout.

@ In both modes, detectors exhibit linear dose rate response up to about
50 Gy/min and adequately reproduce the Bragg peak in depth-dose
measurements.

@ In electronic readout mode, the position resolution of 4 mm (single
pixel) was observed. We expect that with multi-pad readout electrode
with smaller pitch, position resolution of such detector can be
significantly improved.

@ In optical readout mode, the line spread function of the detector was
found to have 0<0.7 mm. Position resolution in this mode also can be
improved by using higher pixel count CCD camera.




® The GEM-based detectors are promising candidates
for creation of two kinds of dosimetry systems:

® one, with electronic readout, would be a fast (timing resolution in
microsecond range), moderate spatial resolution (~1-2 mm,
limited by the cost of electronics) dose imaging detector for
scanning beam monitoring.

® Such detector, with cross-strip readout, would also be a good
candidate for low-rate applications, such as proton tomography.

© Another detector system, with optical readout, would be a slower,
moderately priced detector with sub-millimeter spatial resolution
suitable for dose distribution verification and quality assurance
measurements in hadron therapy. Timing resolution would be
limited by light output and readout speeds (~ 30 ms with moe
CCD cameras)




