DOSE IMAGING DETECTORS FOR CHARGED PARTICLE THERAPY BASED ON GAS ELECTRON MULTIPLIERS

A. V. Klyachko a, D. L. Friesel b, C. Kline b, J. Liechty b, D.F.Nichiporov a, K.A.Solberg a

^a Indiana University CyOps/IUCF, Bloomington, Indiana, USA ^b PartTec, Ltd, Bloomington, Indiana, USA

This work was partially supported by NIH SBIR Grant 1R43CA13791-01A1.

Outline:

- Proton Therapy status
- Need for detectors clinical specs
- GEMs in dose profile measurements basic principles, detector design
- Electronic readout test results
- Optical readout test results
- Summary

PROTON THERAPY COMMUNITY IS GROWING FAST

Institution	Country	Particle	Energy	Beam lines	# of rooms	Starting date
PSI, Villigen	Switzerland	p	250 MeV Cyclotron	New gantry + horiz fixed beam	1+2	2009
UPenn, PA	USA	p	230 MeV Cyclotron	4 gantries, 1 horiz. beam	5	2010
CNAO, Pavia	Italy	p, C- ion	430 MeV/u synchrotron	1 gantry? 3 horiz. 1 vertical	3-4	2010?
HIT, Heidelberg	Germany	p, C- ion	430 MeV/u synchrotron	1 gantry (C-ions), 2 fixed beams	3	2010
WPE, Essen	Germany	p	230 MeV cyclotron	3 gantries, 1 horiz beam.	4	2010
CPO, Orsay	France	p	230 MeV cyclotron	1 gantry, 4 horiz beams	3	2010
PTC, Marburg	Germany	p, C- ion	430MeV/u synchrotron	3 horiz. fixed beams ,1 45 deg fixed beam	4	2010
Chang Gung Hospital	Taiwan	p	230 MeV cyclotron	4 gantries, 1 experimental room	4	2011
Gunma University, Maebashi	Japan	C-ion	400MeV/u synchrotron	90 deg fixed beam, 0 deg fixed beam, 0+90 deg fixed beam	3	2010
PCPTC, Chicago	USA	p	230 MeV cyclotron	2 horiz., 2 dual fixed beams	4	2011
NIU, Chicago	USA	p	250 MeV cyclotron	2 gantries 2 fixed beams	4	2011?
HUPBTC, Hampton, VA	USA	p	230 MeV cyclotron	4 gantries 1 horiz.	5	2010

MOST PLAN TO HAVE PENCIL BEAM SCANNING CAPABILITY!

Pencil Beam Scanning (IMPT) technology refers to a method in which a small area beam is swept laterally across the tumor with dynamically varying lateral position, intensity and energy for each spot (voxel) to achieve a dose distribution that conforms exactly the tumor area. Dose distributions in IMPT are characterized by high lateral and depth dose gradients. A typical radiotherapy treatment requires several hundred Hz voxel by voxel dose delivery frequency.

Radiation detector clinical specifications

Dose delivery method	Application	Position resolution, mm	Timing resolution, ms	Material in beam, mm water equiv.	Other param.
Passive beam spreading	On-line dose monitoring	n/a, centering ±1%	100	<1	a), b), c), e)
	Quality assurance, dose profile measurements	1-2	500	n/a	a), b), d), f)
Uniform - scanning beam	On-line dose monitoring	2-3	<1	<1	a), b), c), e)
	Quality assurance, dose profile measurements	1-2	5	n/a	a), b), d), f)
IMPT/ pencil beam scanning	On-line dose monitoring	<1	<0.1	<0.3	a), b), c), e)
	Quality assurance, dose profile measurements	<1	0.1 - 5	n/a	a), b), d), f)

- a) Dose rate linearity ≤1%
- b) Response non-uniformity across the detector ≤1%
- c) Sensitive area ~20×20 cm²
- d) Sensitive area ~30×30 cm²
- e) Tissue equivalence in 70 250 MeV range ±0.1%
- f) Tissue equivalence in 20 250 MeV range ±1%

From: F. Sauli, Physics Reports, 2004. **403**: p. 471-504

GEMs (Sauli 1997) offer:

- fast performance
- robustness and design flexibility
- excellent spatial resolution
- cascade option to improve signal to noise ratio
- electronic and optical readout schemes
- various pickup electrode layouts in electronic readout mode
- □ ...

10×10 cm² GEM foils from

Tech-Etch Corp, Plymouth, MA.
Up to 30×30 cm² foils are commercially available, bigger foils could be produced upon request

Optical Readout of GEMs

From F.A.F. Fraga et al., NIM A513 (2003) 379

- Although the GEM has been mainly used as a gaseous preamplifier device with electronic readout, it is known that when suitable gaseous mixtures are used, the avalanches emit a large number of photons in the UV, visible, and/or near infrared (NIR) bands. This scintillation, read out by CCD camera, has been used for the development of imaging detectors (PSI-Delft-Coimbra):
- M.M.F.R. Fraga et al, The GEM scintillation in He-CF4, Ar-CF4, Ar-TEA and Xe-TEA mixtures.
 NIM A504 (2003) 88.
- F.A.F. Fraga et al, Luminescence and imaging with gas electron multipliers.
 NIM A513 (2003) 379.
- S. Fetal et al, Dose imaging in radiotherapy with an Ar-CF4 filled scintillating GEM.
 NIM A513 (2003) 42.
- E. Seravalli *et al*, 2D dosimetry in a proton beam with a scintillating GEM detector.
 Phys. Med. Biol. **54** (2009) 3755

dGEM (GEM-based Dose Imaging Detector)

Electronic Readout

- Online beam monitoring (with multi-pad anode), proton tomography (cross-strip anode)
- Fast
- Moderate spatial resolution limited by electronics cost

Optical Readout

- Quality assurance, dose profile measurements
- Migh spatial resolution
- ® Relatively slow

GEM foil being glued to the frame in a laminar flow enclosure

Strip anode follows COMPASS design: 400 µm pitch, strips connected in groups of ten to form 4 mm readout pixel

Shown with resistive voltage divider – later replaced with individual power supplies for each stage

Ar/CO₂ 70/30% vol.

Electronic Readout

Strip anode charge collection efficiency measured with ⁵⁵Fe.

Gain ratio with with proton beam X/Y=0.78+/-0.01

Electron drift time in the 5 mm drift gap is estimated ~70 ns

55Fe pulse height distribution from a single strip

CYCLOPS

Markus ionization chamber (PTW, Model TN23343) with a 5.3 mm diameter active area and NIST-traceable absolute calibration in absorbed dose to water was used to estimate the dose rate.

Gas mixture: Ar/CO₂ 70/30%; V_{GEM1}=350 V, V_{GEM2}=340 V, drift field 1.5 kV/cm, transfer and induction fields 1.7 kV/cm

Electronic readout

Background was measured between the beam runs and automatically cyclops subtracted

Beam profile, Gafchromic film

Beam profile, dGEM, Ø50 mm collimator

Individual X-strip signals as a function of estimated dose rate (bottom axis) and beam current (top axis).

dGEM signal as a function of estimated dose rate (bottom axis) and beam current (top axis). The signal is averaged over X-strips 6-8 and Y-strips 3-5, corresponding to the beam central area.

dGEM Energy Response – Bragg Peak

Dose-depth response. The signal is averaged over X-strips 6-8 and Y-strips 3-5, corresponding to the beam central area.

Optical readout

Gas mixture: Ar/CF₄ 95/5%

SBIG ST-6 CCD Camera Santa Barbara Instrument Group

Thermoelectric Peltier Cooling to -30°C

QE 62% at 650 nm

 375×242 pixels $23 \times 27 \mu m^2$, translates to 0.36×0.42 mm² at the GEM₂ location

Background Sources:

- Camera offset (bias level) subtract
- Dark current (noise) subtract
- Ambient light subtract
- Interactions of scattered beam and secondary particles with camera's sensor – estimate <0.2%
- Scintillations in the detector gas and exit window caused by beam particles – estimate <0.7%

Estimates based on E. Seravalli *et al,* Phys. Med. Biol. **54** (2009) 3755

Dark frame, 3 s exposure

Ambient light (w/o beam), 3 s exposure

(Ambient) – (Dark frame)

(Ambient) – (Dark frame), filtered (kill hot and cold pixels)

Spark, right before HV dropped

Image of 20x1.6 mm collimator 5 nA beam current, 3 s exposure

Signal profile along the single-pixel line above. The main peak has σ =0.7 mm.

5 nA beam current, 3 s exposure

Same, re-pixilated

Same, ambient frame subtracted

Same, ambient frame subtracted, filtered

ImageJ beam profile (20 nA, 3/4" collimator, 3 s exposure)

Beam image
(50 mm collimator, 6 cm of acrylic)
Yellow line – integration area

dGEM Energy Response – Bragg Peak

Conclusions:

- We have developed a prototype detector system for two-dimensional dose imaging in hadron therapy based on double-GEM amplification structure, using either electronic or optical readout.
- In both modes, detectors exhibit linear dose rate response up to about 50 Gy/min and adequately reproduce the Bragg peak in depth-dose measurements.
- In electronic readout mode, the position resolution of 4 mm (single pixel) was observed. We expect that with multi-pad readout electrode with smaller pitch, position resolution of such detector can be significantly improved.
- In optical readout mode, the line spread function of the detector was found to have σ<0.7 mm. Position resolution in this mode also can be improved by using higher pixel count CCD camera.

- The GEM-based detectors are promising candidates for creation of two kinds of dosimetry systems:
 - one, with electronic readout, would be a fast (timing resolution in microsecond range), moderate spatial resolution (~1-2 mm, limited by the cost of electronics) dose imaging detector for scanning beam monitoring.
 - Such detector, with cross-strip readout, would also be a good candidate for low-rate applications, such as proton tomography.
 - Another detector system, with optical readout, would be a slower, moderately priced detector with sub-millimeter spatial resolution suitable for dose distribution verification and quality assurance measurements in hadron therapy. Timing resolution would be limited by light output and readout speeds (~ 30 ms with modern CCD cameras)

