CALORIMETRY

technology frontier & new trends of the field

Erika Garutti - DESY

Focus: calorimeters for HEP

Open questions:

- High granularity vs. compensation
- Analog vs. digital

CALO @ the technology frontier:

- extreme integration
- time resolution

Calorimeters: a simple concept

 $\mathbf{S} \propto \mathbf{E}$

Emphasis on calo for future HEP exp.

	11. 10.0 8000 0.000	
ZEHR	An ECAL prototype for the PEBS detector.	
REPOND	Digital Hadron Calorimeter: a novel approach to calorimetry	
MINARD	LHCb calorimeter calibration	
JEANS	Test Beam Performance of the CALICE SiW Electromagnetic Calorimeter Physics Prototype	
LAKTINEH	Semi-Digital Hadronic Calorimeter Using GRPCs for Future Linear Collider Experiments	
SEIDEL	Particle Showers in a Highly Granular Hadron Calorimeter	
KOTERA	Study of granular electromagnetic calorimeter with PPDs and the scintillator strips for ILC	
CALVO GOMEZ	New Results from the DREAM project	
KOLETSOU	The ATLAS Liquid Argon Calorimeter at the LHC	

5 contributions on ILC calorimeters1 contribution on dual readout (ILC/CLIC)

Calorimeter R&D for HEP detectors

The largest scale HEP detectors at (s)LHC and the future LC

*****At electron-positron the final state corresponds to the underlying physics interaction, e.g. above see $H\to b\bar b$ and $Z\to \mu^+\mu^-$ and nothing else...

High precision LC physics demands a high precision detector:

- high precision vertex (flavor tagging) and tracking (Higgs from di-lepton recoil mass)
- precision calorimetry (heavy bosons reconstruction from di-jet decay)
- → significant improvements in the calo. system, in particular in the HCAL

Jet energy resolution at LHC

ATLAS

5 cm brass / 3.7 cm scint. Embedded fibres, HPD readout

Expected jet resolution:

$$\frac{\sigma}{E} = \frac{125\%}{\sqrt{E}} \oplus \frac{5.6 \text{ GeV}}{E} \oplus 3.3\%$$

14 mm iron / 3 mm scint. sci. fibres, read out by phototubes

Jet resolution with weighting:

$$rac{\sigma}{E} = rac{60\%}{\sqrt{E}} \oplus 3\%$$

Stochastic term for hadrons was ~93% and 42% respectively

Energy resolution: the next generation

how to improve jet energy resolution to match the requirement of the new physics expected in the next 30-50 years:

→ Attack fluctuations

Hadronic calorimeter largest fluctuations (if not compensating)

Two approaches:

- minimize the influence of the calorimeter
 - → measure jets using the combination of all detectors Particle Flow
- measure the shower hadronic shower components in each event & weight
 - → directly access the source of fluctuations Dual (Triple) Readout

Dual Readout Calorimetry

the DREAM Collaboration

- Measure f_{EM} cell-by-cell by comparing Cherenkov and dE/dx signals
- Densely packed SPACAL calorimeter with interleaved Quartz (Cherenkov) and Scintillating Fibers
- Production of Cerenkov light only by em particles (f_{EM}) from CMS-HF (e/h=5) ~80% of non-em energy deposited by non-relativistic particles
- 2 m long rods (10 λ_{int}) with no longitudinal segmentation

What is the dream? Measure jets as accurately as electrons, i.e. $\sigma_{E}/E \sim 15\%/\sqrt{E}$

Determination of f_{FM}

Q/S<1 → ~25% of the scintillator signal from pion showers is caused by non-relativistic particles, typically protons from spallation or elastic neutron scattering

→ Extract f_{FM} from the Q/S ratio

$$\frac{Q}{S} = \frac{R_Q}{R_S} = \frac{f_{em} + 0.20(1 - f_{em})}{f_{em} + 0.77(1 - f_{em})}$$

Recovered linearity of response to pions and "jets"

Energy resolution

Significant improvement in energy resolution especially for jets

Next challenges:

- re-gain partial longitudinal segmentation (ECAL/HCAL) → Dual readout of BGO crystals exploiting the fast Cherenkov response
- 2) add Triple readout → measure the neutron component with hydrogenous materials

Particle Flow

 Particle flow is a concept to improve the jet energy resolution of a HEP detector based on:

proper detector design (high granular calorimeter!!!)

- + sophisticated reconstruction software
- PFlow techniques have been shown to improve jet E resolution in existing detectors, but the full benefit can only be seen on the future generation of PFlow designed detectors

Requires the design of

- a highly granular calorimeter, O(1cm²) cells
- dedicated electronics, O(20M channels)
- high level of integration

Doesn't it remind you of much more common pictures?

15-20 Feb 2010

Full event reconstruction with a particle flow algorithm 10/44

Particle Flow paradigm

- → reconstruct every particle in the event
- up to ~100 GeV Tracker is superior to calorimeter →
- use tracker to reconstruct e[±], μ[±], h[±] (<65%> of E_{iet})
- use ECAL for γ reconstruction (<25%>)
- (ECAL+) HCAL for h⁰ reconstruction (<10%>)
- → HCAL E resolution still dominates E_{iet} resolution
- → But much improved resolution (only 10% of E_{jet} in HCAL)

PFLOW calorimetry = Highly granular detectors (CALICE) + Sophisticated reconstruction software

The technology tree

Calorimeter ZOO

High granularity with plastic scintillator

Basic technique for the active media:

- Single scintillator tile or strips, 3-5mm thickness
- Light collection via a WLS fiber

- Coupled to a Silicon PhotoMultiplier (SiPM) detector: pixel device operated in Geiger mode

- Blue/UV sensitive SiPM allow direct coupling to scintillator
- dynamic range limited by SiPM saturation

25-50 μm

A short parenthesis on SiPM

Large number of dedicated contributions in this conference

CIBINETTO	Results from Silicon Photo-Multiplier neutron irradiation test	
AHMED	Study of timing performance of Silicon Photomultiplier and application for a Cherenkov detector	
VALLAZZA	Performance Of Shashlik Calorimeters Read Out By Silicon Photomultipliers	
DOLENEC	Tests of a Silicon Photomultiplier Module for Detection of Cherenkov Photons	
COLLAZUOL	Studies of Silicon Photo-Multipliers at cryogenic temperatures	
VERHEYDEN	Performance Study of Silicon Photomultipliers as Photon Detector for PET	
NINKOVIC	The First measurements on SiPMs with Bulk Integrated Quench Resistors	
ANFIMOV	Novel Micropixel Avalanche Photodiodes (MAPD) with super high pixel density.	
ROY	Study of the spectral sensitivity of G-APDs in the wavelength range from 250 to 800 nm	

... requires a brief status of SiPM

SiPM (or G-APD) shopping plaza

Increasing number of applications and producers My personal list of interesting devices:

The most known: MPPC http://www.hamamatsu.com/
Reliable/ mass produced/ blue sensitive/ good performance parameters

Larger dynamic range / radiation harder: MAPD http://www.zecotek.com/ Lower gain / O(15000pix/mm²)

Reliable mass production: SenseL SiPM http://sensl.com/products/ Not very aggressive parameters but stable on large scale

Longer recovery time than MPPC:CPTA Smaller after-pulse / smaller crosstalk

UV sensitive (prototype): KETEK SiPM http://www.ketekinkevic

New interesting development: SiMPL (MPI Munich) no poly-silicon resistor / higher geometrical fill factor

Tested prototypes

The CALICE collaboration

Scint/W ECAL

0.3x1x4.5cm³ strips MPPC (Hamamatzu) ~2200 channels 26 layers / 18.5 X₀

Scint/Fe HCAL

0.5x3x3cm³ tiles SiPM (MEPHI/PULSAR) ~8000 channels 38 layers / 4.5 λ_{int}

Cell response equalization with MIP

Using muon signal

Single pixel signal from SiPM

Using pion shower select MIP stubs using the high granularity of the HCAL

Luminosity requirement for in-situ calibration with MIP stabs from jets (ILC detector)

	Luminosity at 91 GeV	Luminosity at 500 GeV
layer-module to 3% to layer 20	1 pb^{-1}	$1.8 \; {\rm fb^{-1}}$
layer-module to 3% to layer 48	10 pb^{-1}	$20 \; {\rm fb^{-1}}$
HBU to 3% to layer 20	20 pb^{-1}	$36 \; {\rm fb^{-1}}$

more statistics obtained from $Z_0 \rightarrow \mu\mu$ events Erika Garutti - Calorimetry

The power of high granularity

REAL DATA!

Capability of π_0 reconstruction in Scint/W-ECAL

Production target 1.8 m upstream of the detector

The power of high granularity

REAL DATA!

Clear structure visible in hadronic shower

Clear determination of the first interaction

Energy density weighting

High energy density in small calo. cells proportional to f_{EM}

Use this correlation to apply weighting corrections event-by-event

E resolution improvement:

stochastic term 60% \longrightarrow 50% / \sqrt{E} using energy density weighting technique

Analog .vs. Digital

photon analysis

$$E_{\gamma} \neq \sum N_{i}$$

hadron analysis

$$E_h \propto \sum N_i$$

ECAL: Analog readout required

HCAL: either Analog or Digital readout

Calorimeter cell size 1x1cm²

The Digital HCAL

Basic technique for the active media:

- Ionization-gas chambers with charge amplification (RPC, GEM, MicroMegas)
- digital readout on silicon pads 1x1cm²
- integrated electronics inside active layer
- high level of data concentration (~0.5 M channels / m³)

2 mm MICROMEGAS in a bulk

Ampl. gap 25-150 μ m \rightarrow narrow avalanches excellent spatial and time resolution

Gas Electron Multiplier foil ւ140 um

Pillars: 400u Ø, 100u height 22/44

The Digital HCAL

The CALICE collaboration

mechanic challenge!

Conductive Epoxy Glue
Pad Board
Signal pads
Mylar
Resistive paint
1.2mm gas gap
Fishing line
spacers
Resistive paint
Mylar
Aluminum foil

Active layers of glass RPCs 1 cm² pads one bit readout per channel

Proof of principle measurement at FNAL test beam:

small prototype 20 x 20 cm² active area

shower in a DHCAL prototype

B.Bilki et al., JINST 4:P04006, 2009 15-20 Feb 2010

The Digital HCAL

The CALICE collaboration

Semi-digital HCAL

- The motivation: Avoid the limited dynamic range of a digital HCAL, keep the simplicity of a gas detector readout
 - 2 bit per cells: 3 thresholds

Simulations show the potential for significant improvement of resolution at high energies

Concept so far unproven, depends on detailed response characteristics of the detectors: Test required!

Analog .vs. Digital

photon analysis

$$E_{\gamma} \neq \sum N_{i}$$

hadron analysis

$$E_h \propto \sum N_i$$

ECAL: Analog readout required

HCAL: either Analog or Digital readout

Calorimeter cell size 1x1cm²

Pushing the Limits of Granularity: A Digital ECAL

Extreme resolution needed to resolve every single particle within an electromagnetic shower:

- Densities of up to 100 particles / mm² expected
- Readout granularity of 50 x 50 µm² required

Digital ECAL technology

A complete ILC detector would be a Tera-pixel Calorimeter! The technology: MAPS (Monolithic Active Pixel Sensors)

- A standard CMOS product developed for vertex detectors
- Potentially significant price advantage over high resistivity Si diodes
- Tests of sensor prototypes at CERN in '09: 8.4 x 8.4 mm² sensitive area

8.2 million transistors 28224 pixels; 50x50 µm²

Monolithic Active Pixel Sensors

Digital ECAL technology

A complete ILC detector would be a Tera-pixel Calorimeter! The technology: MAPS (Monolithic Active Pixel Sensors)

- A standard CMOS product developed for vertex detectors
- Potentially significant price advantage over high resistivity Si diodes
- Tests of sensor prototypes at CERN in '09: 8.4 x 8.4 mm² sensitive area

Monolithic Active Pixel Sensors

First measurements of hit density near the shower maximum of em shower

Extreme integration

Next challenge: Demonstrate feasibility and scalability of imaging calorimeters with fully integrated electronics

Meet the space constraints in a real collider detector

Silicon-W ECAL with 5x5mm² Si-pad Active layer including electronics < 2.5mm

30/44

Design of a multi-layers barrel ECAL and HCAL 15-20 Feb 2010

Realistic W mechanical absorber in carbon fiber structure Talk by D. Jeans Erika Garutti - Calorimetry

Extreme integration

Next challenge: Demonstrate feasibility and scalability of imaging calorimeters with fully integrated electronics

Meet the space constraints in a real collider detector

Each active layer equipped with readout electronics

→ Power pulsing
15-20 Feb 2010

Erika Garutti - Calorimetry

Minimize amount of cables leaving the detector/cracks = Maximize hermeticity

Integrated electronics

New era for chip design:

- Integration of analog and digital parts
- Large dynamic range (15 bits)
- Auto-trigger on ½ MIP

(specific of ILC)

- On chip zero suppress
- Front-end embedded in detector
- → Ultra-low power<<25µW/ch

- 108 channels
- Compactness
- « Tracker electronics with calorimetric performance »
- No chip = no detector !!

FLC_PHY3 18ch 10*10mm 5mW/ch

ATLAS LAr FEB 128ch 400*500mm

Time resolution

Time res. also relevant to study neutron component of hadronic showers

Beyond ILC → CLIC

Higher gradient: 100 MV/m vs 35MV/m Higher cms energy: 3 TeV vs 500 GeV

→ Price to pay: 0.5 ns bunch crossing

Time stamp O(10ns) mandatory

TDC integrated in the "ROC" family of chips for future calorimeters

~ 1ns time resolution

15-20 Feb 2010

Erika Garutti - Calorimetry

Time resolution

Time res. also relevant to study neutron component of hadronic showers

15-20 Feb 2010

Erika

Higher gradient: 100 MV/m vs 35MV/m Higher cms energy: 3 TeV vs 500 GeV

→ Price to pay: 0.5 ns bunch crossing

Time stamp O(10ns) mandatory

sLHC & CLIC R&D

Calorimetry at sLHC → radiation hard material

- Exchange scintillator with quartz
- Test of different quartz + WLS fiber geometries

Advantages of WLS fiber:

- collect light to photo-detector
- Improves homogeneity of tile

Disadvantages of WLS fiber:

Degradation of fast Cherenkov signal (<1ns)
 due to WLS fiber emission

Outlook on future R&D:

- Exploit fast Cherenkov signal + time resolution
- High granularity helps to reduce multiplicity/cell

CLIC: move to Tungsten absorber

Calorimeters behind HEP

Positron Emission Tomography

How can a calorimeter save your life?

→ PET

a commercial PET system

for hospital treatment

the same system without cover

basic unit of a PET: crystal (LSO, BGO) + PMT

→ Functional (metabolich) pictures of living organs in addition to Computer Tomography improves high resolution visualization of anatomic parts

Task: reconstruct 2 γ (511 keV) from annihilation of positron from a β -emitting tracer

→ calorimeter

many talks on this topic tomorrow

New trends in PET calorimeters

High granularity and small calorimeter cells improve space resolution

- → Silicon Photomultiplier replace PMT
- compact system
- •low HV & cost

- •Good E res. → reduce Compton bg.
- •Good t res. → reduce combinatorial bg.

time resolution for coincidence of two channels ~250ps using SiPM readout and dedicated electronics possible

Technology frontier

new products

Extreme granularity

Fiber crystals: ϕ 350um – 3mm

LuAG:Ce Array

Improve space resolution using smallest crystals individually read out

Extreme integration

new generation of Geiger-mode avalanche photo-detector: integrates SPAD on CMOS

- ~50 um pixel SPADs arranged in arrays with individual pixel readout
- O(100ps) time resolution on single photon
- E. Charbon et al., IEEE (ESSCIRC), Sep. 2009

http://www.everyphotoncounts.com/arrays-linarray.php

Ground based Gamma Ray Astronomy

Gamma Ray induces electromagnetic cascade

- → Relativistic particle shower in atmosphere
 - Cherenkov light fast light flash (~ns)
 100 γ / m² (1 TeV Gamma Ray)

Next generation: Cherenkov Array Telescope (CTA

SiPM offer 60% PDE at 400nm

+ improvements with lower fill factor

CAMERA

Expensive

- Fast timing response (~1ns) to cope with EAS Cherenkov flashes
- Electronics inside the camera
- Keep low weight

Talk by O. Grimm

cample: MAGIC telescope

15-20 Feb 2010

Erika Garutti - Calorimetry

40/44

Positron Electron Balloon Spectrometer

Flectroma

Goal: Measure the cosmic ray positron fraction with a balloon borne spectrometer

Motivation: Indirect search for dark matter

Talk by G. Yearwood

Requirements (calorimeter):

•Excellent proton suppression of O(10⁶)

- Total payload weight < 2t
- •Total power consumption < 1000W

15-20 Feb 2010

Proton rejection

e/p separation based on different longitudinal shower shape at a given particle energy (spectrometer) → extremely high granularity

Simulated 40k positrons and 1700k protons

intrinsic resolution limited by high energy π^0 production (p \rightarrow p π^0 X) in front of or in first layers of ECAL

ca Garutti - Calorimetry

42/44

Calorimeter for $\beta\beta0\nu$ search: The Bolometer

Cuoricino experiment @ Gran Sasso

Currently the largest bolometer in the world

11 modules, 4 detector each,

crystal dimension: 5x5x5 cm3

crystal mass: 750 g

 $44 \times 0.79 = 34.76 \text{ kg of TeO}_2$

Encased in a lead shield, nitrogen box, neutron shield, and Faraday cage

2 modules x 9 crystals each

crystal dimension: 3x3x6 cm3

crystal mass: 330 g

 $18 \times 0.33 = 5.94 \text{ kg of TeO}_2$

Total detector mass: $40.7 \text{ kg TeO}_2 \Rightarrow 11.64 \text{ kg}^{130}\text{Te}$

Cuoricino limit on $\beta\beta0\nu$

Resolution: FWHM at 2615 keV = 9.2 ± 0.5 keV

Background:
In the ββ0ν region
= 0.18 ± 0.01 counts /(keV kg y)

lat+⁶⁰Co (2505)

0-2560 keV

on parameter variation

nction with individual

 $\frac{\text{No peak found}}{\tau^{0\nu}_{1/2}} > 1.8 \times 10^{24} \text{ y at } 90\% \text{ C.L.}$ $\frac{2.94}{\text{m}^{2}} < 0.2 - 1.1 \text{ eV}$

CUORE will follow with: 988 TeO₂ bolometers cubes 5 cm³ with a mass of 750 g each.

15-20 Feb 2010

Erika Garutti - Calorimetry

New sensor materials: CdZnTe

New trends in $0\nu\beta\beta$ decay detectors

→ The COBRA experiment

nylon holder

CdZnTe detector

holder structure

- detector based on CdZnTe semiconductor
- operated at room temperature
- high density of the crystal provides excellent stopping power
- detector array under design:

~6400 crystals of 1 cm³ size (~6.5g) for a total of 400 kg

Conclusions

- Calorimetry is a field developed over more than a century, still vital and in continuous evolution
- Calorimetry at the technology frontier drives the development of new materials, new photo-detectors, new electronics, ..., new analysis techniques, new ideas
- Present key issues for calorimetry:
 - Extreme segmentation (Imaging calorimeters)
 - Extreme integration (maximum hermeticity)
 - Compensation in limited volume (Pflow/ dual-readout)

Thank you for your attention

BackUP

New Type of SiPM at MPI: SiMPL

- Simplified SiPM (SiMPL):
 - Common cathode and n⁺ backside: significantly reduced surface obstructions
 - Anode is an internal node within Si bulk
 - Bulk region beneath the anode acts as vertical resistor, shielded by the anode from depletion
 - Gap regions are depleted and isolate the individual resistors

The Challenge:

resistor matching via Si thickness (does not work with usual wafer thickness)

thin Si (or EPI material)

Cherenkov light measurements

C/S ratio event by event: integrate charge Q1 collected in the Gate1, and Q2 collected in Gate2

Gate 1

The variable C/S on BGO is able to measure the em component of the shower on the Calorimeter

Gate 2

Detecting UV light

Importance of monitoring/calibration system in a SiPM based calorimeter

Calibration system should deliver:

- -Low intensity light for SiPM Gain calibration
- -High intensity of light for saturation monitoring
- -Medium intensity light for monitoring T,V variations

Light intensity for 8000 channels within factor 2 >94% calibration efficiency on full calorimeter

ECAL discussion

 Dynamic range : electronics & Photon sensor MPPC non linearity

