Commissioning and Performance of the Outer Tracker Detector of the LHCb Experiment

Antonio Pellegrino (on behalf of the LHCb Outer Tracker Group)

12th Vienna Conference on Instrumentation - VCI 2010

Vienna, 16-02-2010

- o Introduction
 - ✓ CP Violation and B Physics
 - √ the LHC environment for B Physics
 - √ the LHCb Experiment
- o The LHCb Tracking System
 - overview (Inner and Outer Tracker)
 - * expected performance
- o The Outer Tracker
 - design and construction
 - (beam tests)
 - installation and commissioning

B Physics Mission

- o The physics of hadrons containing b-quarks
- o CP-violation (Charge-Parity asymmetry) with B-mesons
 - measurable through B/anti-B mixing and decay

- o New physics with rare B decays
 - B decays with small conventional
 - branching fractions involving loop diagrams
 - New physics may contribute at the
 - same scale as conventional physics

Nobel prize 2008:

- 1. spontaneous symmetry breaking +
- 2. at least three families of quarks = possible *CP violation*

B Physics at the LHC

LHC will act as a prolific B-factory! E.g. pp collisions at $\sqrt{s} = 14$ TeV expected to give large b cross section $\sigma_{bb} \sim 500~\mu b$

- ATLAS, CMS: general-purpose experiment, including a B-physics program
- o LHCb: dedicated B-physics detector, with PID, excellent decay-time resolution and efficient B trigger, running at "modest" luminosity $L\sim 2\times 10^{32}$ cm⁻²s⁻¹ (by adjusting beam focus) $\to 10^{12}$ bb/year (10^7 sec)

B Production at LHCb

LHCb Detector (Overview)

The LHCb Experiment (3D)

LHCb Detector Slide Show (1)

- o contains the pp-collision point
- o precise determination of primary and secondary vertices (B lifetime)

LHCb Detector Slide Show (2)

LHCb Detector Slide Show (3)

- o particle identification; electron, photon, hadron
- trigger (at 40MHz)

LHCb Detector Slide Show (4)

- muon tracking
- trigger (at 40MHz)

LHCb Detector Slide Show (5)

- o charged particle momentum determination
- o TT before magnet, Inner and Outer Tracker after magnet

Tracking at LHCb

Long tracks

⇒ highest quality for physics (good IP & p resolution)

Downstream tracks

 \Rightarrow needed for efficient K_s finding (good p resolution)

Upstream tracks

⇒ lower p, worse p resolution, but useful for RICH1 pattern recognition

T tracks

⇒ useful for RICH2 pattern recognition

VELO tracks

⇒ useful for primary vertex reconstruction (good IP resolution)

Tracking Performance Goals

Tracking System

TT + 3 stations (T1,T2,T3), each with 4 detection planes $(0^{\circ},+5^{\circ},-5^{\circ},0^{\circ})$

Similar sensors for TT & IT: Si μ -strip with pitch ~ 200 μ m

TT: 128 Modules IT: ladders with (7 Si sensors) 1 or 2 sensors

(see J. van Tilburg's poster at this conference)

IT

Outer Tracker Straw Tubes (56 k ch)

IT and OT

Vertex and Trackers

(see C. Parkes' talk at this conference)

(see J. van Tilburg's poster at this conference)

LHCb

MOON

OT Modular Design

□ Cracow: all straw-support panels

□ Warsaw: 124 *short* modules (6 types)

□ Heidelberg: 62 long modules

□ NIKHEF: 130 *long* modules

One large module:

❖ 34 x 490 cm²

❖ 4 x 64 = 256 channels

i.e. assembly of

- 56,000 straws
- 56,000 wires
- 200,000 soldered joints

340 mm

- 620 panels
- 185 F and 124 S Modules

Straw Tubes Modules

Straw Tubes packed in double-layered modules

- * modules 64-cells wide
- * modules only ~0.37% of 1 X₀

 o "light" panels

(Rohacell core with carbon fiber skins)

o "light" straws

Module Production

Photo-gallery (day 1)

Photo-gallery (day 2)

Quality Assurance

Detector Module mass construction ~ assembly of:

- 56,000 straws
- 56,000 wires
- 200,000 soldered joints
- 620 panels
- 185 F and 124 S Modules

Quality Assurance during production:

- o Wire tension
- o Dark current
- o Wire pitch

Quality Assurance after production:

- o Gas Tightness, Dark current
- o detector response to ⁹⁰Sr β-source

Full scan (every cm²) of all OT modules

All quality plots for each module can be found here:

<u>www.nikhef.nl/pub/experiments/bfys/lhcb/outerTracker/QualityPlots/</u>

90Sr scans

Check detector response:

- Current from 90Sr B-source
- Pulse height from monochromatic 55Fe ysource
- Full scan of the entire module
 - Every cm² of the OT is checked

5 meter

Production Summary

Module Classification (1st choice, 2nd choice, etc.) based on:

- ✓ **Dead channels**: in general disconnected shorts (0.6‰)
- √ "Noisy" Channels: high dark current (0.7‰), often "cured" after HV training)

- o 70% of bad channels in 10% of the modules (typically the first ones produced)
- O Remaining modules: <1% bad channels

All modules produced, shipped to CERN, installed in the LHCb cavern on their mechanical support, and re-tested

Test Beam

- □ Final detector modules
- □ Final prototype electronics
- → 6 GeV electrons at DESY

- ✓ Efficiency
- ✓ Resolution
- ✓ Noise
- ✓ Cross talk

。 HV

VS

- Amplifier threshold
- Position along straw

Test Beam Results

Next Page \Rightarrow Resolution and efficiency for different HV and amplifier threshold

Test Beam Results (cont'd)

o Good efficiency and resolution for HV > 1520 V

√ ε ≈ 98%

 $\sqrt{\sigma} \approx 200 \ \mu \text{m}$

o Corresponds to Gain > 50,000

Ageing Surprise!

Irradiate with 2 mCi 90Sr source

The ageing of the LHCb OT exhibits unique features:

- · The ageing rate is large
- · No ageing below the source
- · No ageing downstream of the radioactive source

A real surprise - this had not been seen in the ageing tests performed with test modules in the R&D phase

Ageing R&D

Ageing Studies in R&D phase (test modules):

- 12 MeV proton beam
- Hadronic environment (in situ HERA-B)
- 9 keV X-ray tube.

Accumulated 3 C/cm (>10y in LHCb hottest spot) in 120 days \Rightarrow No effects seen

IEEE 2004 NSS-MIC conference (Oct 2004, Rome) by Sebastian Bachmann

- Session N39: Radiation Damage Effects II Aging of Gaseous Detectors
- Title: Ageing Studies for the Straw Tube Detectors for the LHCb Outer Tracking System

Ageing References

Needs a dedicated talk, but see *Ageing in the LHCb outer tracker: Phenomenon*, culprit and the effect of oxygen, Nuclear Instruments and Methods in Physics Research Section A, Available online 10 November 2009, ISSN 0168-9002, DOI: 10.1016/j.nima.2009.10.049 (http://dx.doi.org/10.1016/j.nima.2009.10.049)

Presented by M. Blom at the 11th Pisa meeting for advanced detectors, Elba, Italy 25-29 May 2009

Ageing References (cont'd)

Needs a dedicated talk, but see *Ageing in the LHCb outer tracker: Phenomenon*, culprit and the effect of oxygen, Nuclear Instruments and Methods in Physics Research Section A, Available online 10 November 2009, ISSN 0168-9002, DOI: 10.1016/j.nima.2009.10.049 (http://dx.doi.org/10.1016/j.nima.2009.10.049)

Presented by M. Blom at the 11th Pisa meeting for advanced detectors, Elba, Italy 25-29 May 2009

Standard modules built with different glue $(Trabond 2551) \Rightarrow NO Ageing!!$ (Confirms malicious effect of AY-103-1)

Further Ageing Studies - AY103

During our tests, we came to realize that:

For mass production, did not use AY103, but AY103-1 o in 2003 producer switched from AY103 to AY103-1

"The idea of the change in material status is not one of improvement in mechanical properties etc. ...

	AY 103:HY 991 (100:40 w/w)	AY 103-1:HY 991 (100:40 w/w)
Viscosity 25 °C of basic resin (Brookefield RVT, Spindle 4, 50 RPM)	AY 103 is 1400 - 1800 mPas	AY 103-1 is 1800 - 2400 mPas
Appearance	Clear liquid, free of impurities	Clear liquid, free of impurities
Gelation time at 25°C (50g bulk, metal rod)	300-500 mins	200 - 400 mins
Lap shear strength at 25*C Cured 30 min at 100°C: (Sand blasted aluminium L165, mean of 5 replicates contact pressure)	14.0 MPa minimum mean	14.0 MPa minimum mean

AY103-1: a Safer Araldite!

...but one of making it safer to use with regard to Health & Safety and complying with European law.

... labeled with the Toxic Symbol (skull & crossbones). Araldite AY 103 would fall into this category. Araldite AY 103-1 is the <u>DBP free version</u> and should not require such labeling."

AY103

Chemical Name	CAS-No.	Symbol(s) :	R-phrase(s)	Concentration [%]
reaction product: bisphenol A- (epichlorhydrin); epoxy resin (number average molecular weight < 700)	25068- 38-6	Xi, N	R36/38 R43 R51/53	75.00 - 85.00
dibutyl phthalate EC-No.: 201-557-4	84-74-2	T, N	R61 R50 R62	15.00 - 21.00

$$C_{15}H_{16}O_2$$
 CH_3 OH_3

AY103-1

Chemical Name	CAS-No.	Symbol(s) :	R-phrase(s)	Concentration [%]
reaction product: bisphenol A- (epichlorhydrin); epoxy resin (number average molecular weight < 700)	25068- 38-6	Xi, N	R36/38 R43 R51/53	75.00 - 85.00
Methyl-ethyl naphthalene (<u>link</u>)	6158-45-8			20

Might this have anything to do with our ageing?

Out-gassing Studies

Glue samples in vacuum in combination with mass spectroscopy

Direct comparisons of AY103, AY103-1 and AY105-1 (100% epoxy, no plastifiers like dibutyl phthalate or methylethyl-naphthalene, thus more viscose) in our test vessel \Rightarrow AY105-1 no ageing, AY103 significantly less than AY103-1!

HV Training

Ageing seems to get less with flushing, addition of ~2% of O_2 , lower gas flow, but what to do if...

HV Training!

Optical and SEM examination of HV-trained wire sample:

- deposit removed
- Au layer undamaged
- (small C deposit?)

OT Installation (1)

OT Installation (2)

FE Boxes

OT C-frames

survey targets (photogrammetry)

OT Installation (3)

- 2006-2007: Assembly of modules into C-frames and installation of C-frames in detector
- Before assembly of modules, C-frames tested for
 - o gas tightness of gas distribution system <1mbar/minute at 10mbar CO2
 - o High Voltage leakage currents
 - o Low Voltage connections OK
 - o optical fiber attenuation <30dBm
- lacktriangle After assembly of modules into C-frame, lacktriangle modules tested for
 - o gas tightness: <1mbar/minute & matching production
 - o High Voltage leakage currents minutes 1.8kV-CO2
- Functionality test with 55Fe source
 - o >2700 straws ($\sim \frac{1}{2}$ OT) individually tested
 - o 13 dead channels; 11 known at production
- □ 2008: Installation of FE electronics

<10nA/RMS<1nA

oLHCb note Ihcb-2008-033

OT Installation (4)

OT Front-End Electronics

OT Readout

Front view of 2 C-Frames (6+6 in total)

LHCb

Commissioning

Status before 2009 Data Taking

Problem

HV Problems

Readout

Noisy

LHC Startup

After the LHC Media Day in September 2008...

Cosmics

... we have taken lots of cosmics (timing, alignment, ...)

Beam Gas

10F

... and then the first p-beamgas collisions...

z-position of POCA to z-axis for OT tracks

beam gas events (62509-62548)

1st evidence of pp collisions before VELO went in!?

1st Beam Data

... and finally the first beam-beam collisions ...

1st Beam Data (cont'd)

... and finally the first beam-beam collisions ...

Beam Collisions at 2.4 TeV

... and at the end of the 2009 run, also some collisions at \sqrt{s} = 2.4 TeV

Data Analysis

Look at various type of data with various goals:

- o Random triggers (noise, debug FE : buffer overflow, mismatch,...)
- o Calibration triggers (threshold scans, time-delay scans)
- o Cosmics triggers:
 - Detector geometry + channel mapping
 - Data decoding
 - Pattern recognition
 - Track fitting
 - RT calibration
 - TO determination
 - Alignment
 - •
- o pp collision data:
 - o MC tuning
 - o efficiencies
 - 0 ...
 - o first invariant masses

Cosmic Data

T₀ (1st iteration from 2009 Cosmics)

 t_0 correction ($\sigma = 1$ ns) using average drift time per module

Drift Time

RT Relation

Occupancy

Occupancy distribution from 2009 pp collision as expected. Few dead and noisy channels, all identified and repaired in 2010

Efficiency Profiles

In 2009 pp collision data only a handful (<98%) not fully working: all identified and repaired in 2010

Drift Cell Efficiency

98.7% efficiency plateau

Track Distributions

First look, roughly as expected No beam gas correction applied

Resolution Studies

Residuals from Track Fitting procedure

OT residual (rms-unbiased)

Discrepancy between data and MC will presumably vanish once we complete individual modules alignment

Residual distribution may be "biased" by outliar removal in pattern recognition and track fitting procedures

First Reconstructed Decays

Still enough to start looking at invariant masses...

 σ = 4.3 ± 0.1 MeV/c² M(Ks) = 497.3 ± 0.2 MeV/c² M(Ks^{PDG}) = 497.7 MeV/c² σ = 1.4 ± 0.1 MeV/c² M(Λ) = 1115.6 ± 0.1 MeV/c² M(Λ ^{PDG}) = 1115.7 MeV/c²

Summary

- □ LHCb is eager to collect data with its full detector as LHC turns on to search for new physics by
 - o testing the CKM matrix mechanism
 - o probing rare decays
- □ Tracking system performance of crucial importance
 - o Outer Tracker consisting of straw-tubes modules
 - o All OT modules built and tested
 - Quality Assurance during production
 - · Beam tests
 - · Unexpected module ageing discovered, due to araldite plastifier
- ☐ All OT modules installed and re-tested in situ
 - o Module ageing remains a concern
 - o Commissioning completed
 - Electronics debugging
 - Cosmic data: track reconstruction, T_0 and RT calibration, alignment, etc.
 - · Collision data: occupancy, efficiency, resolution, etc.