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Overview
- Introduction 
- Experimental methods
- Measurements and discussion
- Conclusions
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Improved SiPM performances at low temperature:
  

1) lower dark noise by orders of magnitude
2) lower after-pulsing probability (down to ~100K)
3) higher PDE (down to ~100K, depending on λ)
4) higher timing resolution
5) better Vbreakdown stability (w.r.t. to variations of T)

Motivations

This talk: characterization of FBK SIPM in the range 50K<T<320K

1) junction forward and reverse (breakdown) characteristics
2) gain, dark current, after-pulses, cross-talk
3) photon detection efficiency (PDE)

→ SiPM is an excellent alternative to PMT at low T 
even more than at room temperature !!!
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Experimental SetupVacuum vessel (P~10-3 mbar)

Alogen Lamp

Monocromator (200-900nm)

Quartz filers to 
Calibrated Photodiode (outside) 
and to SiPM (inside vessel) 

Cryocooler
(50K<T<300K)

Amplifier UV LED (380nm)
+ fibers to SiPM
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Experimental setup

• Care against HF noise 
 → feed-throughts !!!

• Amplifier Photonique/CPTA
 (gain~30, BW~300MHz) 

Voltage/Current bias/measurement

Pulse measurement

• Keytley 2148 for Voltage/Current bias/readout 

RL
CC

Cb

-Vb

GND

Vout

Rb
hν

SiPM

Temperature control/measurement
• Cryo-cooler + heating with low R resistor
• thermal contact (critical) with cryo-cooler head:
 SIPM within a copper rod   

• T measurement with 3 pt100 probes
• Measurements on SiPM carried after 
   thermalization (all probes at the same T)
• check junction T with forward characteristic
   

SiPM samples
• FBK SiPM runII – 1mm2

 (Vbr~33V, fill factor~20%)
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The leading edge of the signal is much 
faster than trailing edge:
1.  τD= RSCD << RQCD = τQ
2.  turn-off mean time is very short
     (if RQ is sufficiently high, Ilatch ~ 10µA)

t

i

exp(-t/τQ)

Gain and pulse shape
If RQ is high enough the internal current decreases at a level 
such that statistical fluctuations may quench the avalanche

1-exp(-t/τD)

 ~ (VBIAS-VBD)/(RQ+RS)=Ilatch

99% recovery time ~ 5 τQ

Recovery time:  
increases at low T due to  polysilicon RQ 
while CD is independent of T

Gain~CD ∆V →  independent of T
at fixed Over-Voltage (∆V)
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I-V measurements: forward bias 

Forward current J F~expV d
q

 k T
 Diffusion dominating: η → 1

Recombination dominating: η → 2
 

1

2 Ohmic behavior at high current

Linear fit → Rseries ~ RQ / Ncells

3       Voltage drop (Vd) increases 
with T decreasing (e.g. at 1µA)
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I-V measurements: forward bias 

Voltage drop at fixed forward current → precise measurement of junction T

Injected constant 
current Iforward = 1µA

T (K)

V dr
op

 (m
V)

• linear dependence with slope dVdrop/dT|1µA ~ 3mV/K
• precise calibration/probe for junction Temperature

V d= k T ln I forward / I 0
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Series Resistance vs T
1) Fit at high V of  forward characteristic → measurement of series resistance Rs

2) Exponential recovery time (afterpulses envelope) → measurement of  Rs

● fit Ifwd-V 
◌ fit exp recovery

5µs

1µs

The two kinds of measurement 
are consistent 
→ dominant effect from 
quenching resistor RQ

-0 .35

-0 .3

-0 .25

-0 .2

-0 .15

-0 .1

-0 .05

0

0 .05

-1 .0E -08 1 .0E -08 3 .0E -08 5 .0E -0 8 7.0E -08
T im e  (s )

Vo
lta

ge
 (V

)

Overlap of waveforms 

Recovery time exponential 

After-pulsing 
more probable at short delays 

NOTE: afterpulses envelope
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I-V measurements: reverse bias 

At high T ~80 mV/K
(fit above 240K)

Fit:  linear + quadratic (V > Vbr)

Vbreakdown vs T

Avalanche breakdown voltage decreases due to increased
carriers mobility at low T
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V breakdown vs T 

dV
br
/d

T 
(V

/K
)

 ∆vbr /Vbr /∆T
~0.20 %/K

∆vbr /Vbr /∆T
~0.25 %/K

V br
 (V

)

 T (K)

 T (K)

Temperature coefficient

Consistent with Baraff model
for doping profile of FKB SiPM

Improved stability 
at lower T

Vbr measured by fitting single 
p.e. charge vs bias voltage
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Dark current vs T at constant gain (i.e. fixed ∆V)
Main noise mechanisms:

1) Gereration/Recombination 
noise (SHR field enhanced) 

2) Band-to band Tunnel noise
(strong dependence on the 
Electric field profile)

Tunnel noise dominating 
for T<200K (FBK devices)

Ireverse∝T1.5exp −Eg

KB T
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Dark counts rate vs T at constant gain (i.e. fixed ∆V)

Measurement: rate of ≥1p.e. 
at fixed gain (i.e. ~fixed ∆V)⚪ ∆V~2.0V

⚫ ∆V~1.5V

Two tunneling mechanisms ?
to be understood

Activation energy 
Eg~0.358eV 
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After-pulsing
Carrier trapping and delayed release

Pafter−pulse  t = Pc⋅
exp −t / 


⋅P01

Pc  : trap capture probability
∝ carrier flux (current) during avalanche  ∆∝ V (over-voltage)

 ∝ N traps 

τ : trap lifetime
 depends on trap level position 

P01 : trigger probability
 ∝ ∆V(t) (over-voltage, recovery)

quadratic
dependence
on ∆V

It can be reduced to % in a wide ∆V range... at 300K

 ∝ ∆V2
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Slow tail
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After-pulses vs T (constant gain, ie ∆V)

Measurement: 
of average number of after-pulses
counted in the 5µs time window
following the trigger (1 p.e.)
at fixed gain (i.e. ~fixed ∆V)
(dark noise subtracted)

⚪ ∆V~2.0V
⚫ ∆V~1.5V

• Few % at room T
• quite constant down to ~120K 

•Several % below 100K

T decreasing: increase of 
characteristic time constants of 
traps (τtraps) is compensated by
increasing cell recovery time (RQ)

T<100K: new traping centers active
(to be studied in more detail)  
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∆V scan (fixed T) – DR, AP, Gain, X-TALK

Gain and Cross-Talk independent of Temperature

Gain and

Dark Noise Rate 
decreasing at low T

After-Pulsing 
increasing at low T
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PDE vs ∆V and λ (room T)

Reduced because
avalanche triggered 
by holes (and ARC)

Reduced because
low QE

Flat factor
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 ~50%
PDE dependence on ∆V
(at different λ)

PDE dependence on λ
(at different ∆V)

Saturation starts
above ∆V~3V

Linearity below 
∆V~3V
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PDE at various λ - ∆V scan (at constant T)

∆V (V)

PD
E 

(a
.u

.)

PDE vs ∆V measured as Current/Gain → PDE (a.u.) ≡ ISiPM / Icalib / ∆V
Normalization to calibrated photo-diode current (not absolute # of photons) 

∆V (V)∆V (V)

•193K and 123K measurements not affected by after-pulses → saturation visible
•55K affetcted by after-pulses (not corrected; cross-talk is not subtracted too)

(Dark rate subtracted - small effect)
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PDE with LED (380nm) - ∆V scan (const. T)

∆V (V)

PD
E 

(a
.u

.)

PDE (a.u.) ≡ ISiPM / ILED / ∆V

• 55K affected by After-Pulses
• 295K less affected by A-P 

(Dark rate subtracted)

→ Slope PDE/∆V (at small ∆V)   
    independent of T
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PDE with LED (380nm) - T scan (∆V=2V)

T (K)

PDE dependence on T at fixed gain. Normalization with PDE at T=300K 
PD

E(
T)

 / 
PD

E(
30

0K
)

PDE (T) ≡ ISiPM (T) / ILED 

onset of carriers
freeze-out 

related to the  increase of impact ionization 
coefficient ? (higher avalanche probability )

related to the increase of recombination ?
(higher losses in charge collection )

Drop here: 
seen also with 
APDs in 
proportional 
regime 

Enhancement 
of PDE at 
short λ is seen 
also in SPAD 
devices

Studies ongoing for better understanding this shape 
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T (K)
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)
PDE at various λ – T scan (∆V =2V)
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PDE dependence on T at fixed gain. Normalization with calibrated 
photo-diode current and with PDE at T=300K (double ratio)

• shape similar at different λ → related to properties of multiplication /recombination
• lower efficiency at low T for longer λ → due to absorption length ~ 1/T 

 (with constant depletion width)

T (K)
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Conclusions

A few sets of measurements in DC and pulse mode show that SiPM 
behave quite well at low T: 
• Breakdown V decreases non linearly with T 

→ stability of devices wrt T is even better at low T
• Dark rate reduced by orders of magnitude

→ different (tunneling) mechanism below ~200K
• After-pulseing increases swiftly below 100K
• Cross-talk and Gain (detector capacity) are independent of T (at fixed Over-V.)
• PDE higher than at T room at low T for short λ 

Additional measurements on-going with very short pulsed laser for
• accurately measuring after-pulsing characteristic time constant(s) vs T
• cross-checking PDE (with pulsed method)
• measuring timing resolution vs Temperature (expected to improve at low T)
• check gain resolution at low T

Studied on-going in modeling (for better understanding) After-Pulsing and PDE

In summary: 
in the range 100K<T<200K SiPMs perform optimally (even better than at room T)
→ excellent alternatives to PMTs in cryogenic applications (eg Noble liquids)
 

Acknowledgments: E.Johnson, A.Baldini, A.Brez, G.Signorelli
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Additional material
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The SiPM equivalent circuit has 
two time constants:
•   τF= RLoad  CTOT            (fast)
•     τQ  = RQ (CD+CQ)       (slow)

F. Corsi, et al.  NIMA 572(2007) 

fastslow

Gain and pulse shape

Waveform:
The two current components show 
different behavior with Temperature

(fast component is independent of T 
because stray CQ couple with 
external RLOAD independently of RQ)

H.Otono, et al. 
PD07 Conference 
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Silicon properties at low T: higher mobility

Silicon propt's at low T: carriers freeze-out
For T<100 K, the ionized impurities act as shallow 
traps (provided the impurity doping concentration
below  of 1018 atoms/cm2) and carriers begin
to occupy these shallow levels. 

For T<30 K, practically no carriers remain in the bands

Plots from Guiterrez, Dean, Claeys - 
“Low Temperature Electronics: Physics, 
Devices, Circuits and Applications”,
Academic Press 2001
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Silicon propt's at low T: impact ionization

For T<77K no data are available → modeling is 
quite difficult... 

Silicon propt's at low T: absorption length
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Avalanche breakdown vs T

Avalanche breakdown V is expected to 
show a non linear dependence on T 
(depending of the junction type and 
doping concentration)

Breakdown V decreasing with T due to 
increasing mobility 

Crowell and Sze

More recent model by
Crowell and Okuto after Shockley, 
Wolff, Baraff, Sze and Ridley.

NOTE: in freeze-out regime Zener 
(tunnel) breakdown could be relevant.
→ negative Temperature coefficient
(increasing with decreasing T)
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p-n junction characteristics: forward bias

Sze - “Semiconductor devices”

E.Johnson (RMD) at IEEE 2009
“Characterization of CMOS APD at cryogenic T”

diffusion 
dominating 

recombination 
dominating 
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Dark count rate vs T (at fixed gain)

Measurement: rate of ≥1p.e. 
at fixed gain (i.e. ~fixed ∆V)

⚪ ∆V~2.0V
⚫ ∆V~1.5V



T dependence: Dark Rate

H.Otono – PD07

Overvoltage (V)
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Dolgoshein et al, NIM A 442 (2000)

MePHY/Pulsar
Hamamatsu

SHR 

Tunneling

Electric field engineering and silicon quality
make huge differences in dark noise as a function of T



T dependence: PDE (SPAD/APD devices)
PDE dependence on T 
(Over-voltage fixed)

Combination of various effects:
• P01 increases at low T  because of         
   increased impact ionizazion
• Optical attenuation length increased
 (Energy gap increases) at low T

• Depletion region widening in APDs,  
 but not in SiPM which are fully depleted

Similar effect expected also for SiPM

SPAD: Cova el al, Rev.Sci.Instr. 7 (2007)

APD: Johnson et al (RMD) IEEE 2009 



Timing vs T (SPAD devices)

Timing: better at low T
Lower jiitter at low T due to 
higher mobility

(Over-voltage fixed)

I.Rech el al, Rev.Sci.Instr. 78 (2007)

Time resolution of
SPAD (Cova et al.)
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Setup: vacuum vessel + cryo-cooler

cryo-coolerAcknowledgments: A.Brez, A. Baldini, G.Signorelli (Pisa)

Vacuum
vessel

SiPM's are in thermal contact with a cooled Cu rod
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