Studies of SiPM at Cryogenic Temperatures

G.Bisogni, G.Collazuol, A.Del Guerra, C.Piemonte

Overview

- Introduction
- Experimental methods
- Measurements and discussion
- Conclusions

Motivations

This talk: characterization of FBK SIPM in the range 50K<T<320K

- 1) junction forward and reverse (breakdown) characteristics
- 2) gain, dark current, after-pulses, cross-talk
- 3) photon detection efficiency (PDE)

Improved SiPM performances at low temperature:

- 1) lower dark noise by orders of magnitude
- 2) lower after-pulsing probability (down to \sim 100K)
- 3) higher PDE (down to \sim 100K, depending on λ)
- 4) higher timing resolution
- 5) better V_{breakdown} stability (w.r.t. to variations of T)

→ SiPM is an excellent alternative to PMT at low T even more than at room temperature !!!

Vacuum vessel (P~10⁻³ mbar)

Experimental Setup

Monocromator (200-900nm)

Quartz filers to **Calibrated Photodiode** (outside) and to **SiPM** (inside vessel)

Amplifier

UV LED (380nm) + fibers to SiPM ₃

Experimental setup

Temperature control/measurement

- Cryo-cooler + heating with low R resistor
- thermal contact (critical) with cryo-cooler head:
 SIPM within a copper rod
- T measurement with 3 pt100 probes
- Measurements on SiPM carried after thermalization (all probes at the same T)
- check junction T with forward characteristic

• Keytley 2148 for Voltage/Current bias/readout

Pulse measurement

- Care against HF noise
 → feed-throughts !!!
- Amplifier Photonique/CPTA (gain~30, BW~300MHz)

SiPM samples

• FBK SiPM runll – 1mm² (Vbr~33V, fill factor~20%)

Gain and pulse shape

If R_Q is high enough the internal current decreases at a level such that statistical fluctuations may quench the avalanche

The leading edge of the signal is much faster than trailing edge:

1.
$$\tau_D = R_S C_D \ll R_Q C_D = \tau_Q$$

2. turn-off mean time is very short (if $R_{Q~is}$ sufficiently high, $I_{latch} \sim 10 \mu A)$

Recovery time:

increases at low T due to polysilicon R_Q while C_D s independent of T

Gain~ $C_D \Delta V \rightarrow \text{independent of T}$ at fixed Over-Voltage (ΔV)

I-V measurements: forward bias

1 Forward current $J_F \sim \exp(V_d \frac{q}{\eta k T})$

Diffusion dominating: $\eta \to 1$ Recombination dominating: $\eta \to 2$

I-V measurements: forward bias

Voltage drop at fixed forward current → precise **measurement of junction T**

- linear dependence with slope $dV_{drop}/dT|_{1uA} \sim 3mV/K$
- precise calibration/probe for junction Temperature

Series Resistance vs T

- 1) Fit at high V of forward characteristic → measurement of series resistance R_s
- 2) Exponential recovery time (afterpulses envelope) \rightarrow measurement of R_s

The two kinds of measurement are consistent

→ dominant effect from quenching resistor R_o

NOTE: afterpulses envelope

I-V measurements: reverse bias

Avalanche breakdown voltage decreases due to increased carriers mobility at low T

V breakdown vs T

Consistent with Baraff model for doping profile of FKB SiPM

Temperature coefficient

Improved stability at lower T

Dark current vs T at constant gain (i.e. fixed ΔV)

Tunnel noise dominating for T<200K (FBK devices)

Dark counts rate vs T at constant gain (i.e. fixed ΔV)

After-pulsing

It can be reduced to % in a wide ΔV range... at 300K

After-pulses vs T (constant gain, ie ΔV)

Measurement:

of average number of after-pulses counted in the $5\mu s$ time window following the trigger (1 p.e.) at fixed gain (i.e. \sim fixed ΔV) (dark noise subtracted)

- Few % at room T
- quite constant down to ~120K

T decreasing: increase of characteristic time constants of traps (τ_{traps}) is compensated by increasing cell recovery time (R_{o})

Several % below 100K

T<100K: new traping centers active (to be studied in more detail)

ΔV scan (fixed T) – DR, AP, Gain, X-TALK

Gain and Cross-Talk independent of Temperature

اب ــ

PDE vs ΔV and λ (room T)

PDE at various λ - ΔV scan (at constant T)

PDE vs ΔV measured as Current/Gain \rightarrow PDE (a.u.) $\equiv I_{SiPM} / I_{calib} / \Delta V$ Normalization to calibrated photo-diode current (not absolute # of photons)

- •193K and 123K measurements not affected by after-pulses → saturation visible
- •55K affetcted by after-pulses (not corrected; cross-talk is not subtracted too)

(Dark rate subtracted - small effect)

PDE with LED (380nm) - ΔV scan (const. T)

PDE (a.u.)
$$\equiv$$
 I_{SiPM} / I_{LED} / Δ V

- 55K affected by After-Pulses
- 295K less affected by A-P

(Dark rate subtracted)

→ Slope PDE/ Δ V (at small Δ V) independent of T

PDE with LED (380nm) - T scan ($\Delta V=2V$)

PDE dependence on T at fixed gain. Normalization with PDE at T=300K

Studies ongoing for better understanding this shape

PDE at various λ – T scan ($\Delta V = 2V$)

PDE dependence on T at fixed gain. Normalization with calibrated photo-diode current and with PDE at T=300K (double ratio)

- shape similar at different $\lambda \rightarrow$ related to properties of multiplication /recombination
- lower efficiency at low T for longer $\lambda \rightarrow$ due to absorption length $\sim 1/T$ (with constant depletion width)

Conclusions

A few sets of measurements in DC and pulse mode show that SiPM behave quite well at low T:

- Breakdown V decreases non linearly with T
 - → stability of devices wrt T is even better at low T
- Dark rate reduced by orders of magnitude
 - → different (tunneling) mechanism below ~200K
- After-pulseing increases swiftly below 100K
- Cross-talk and Gain (detector capacity) are independent of T (at fixed Over-V.)
- PDE higher than at T room at low T for short λ

Additional measurements on-going with very short pulsed laser for

- accurately measuring after-pulsing characteristic time constant(s) vs T
- cross-checking PDE (with pulsed method)
- measuring timing resolution vs Temperature (expected to improve at low T)
- check gain resolution at low T

Studied on-going in modeling (for better understanding) After-Pulsing and PDE

In summary:

in the range 100K<T<200K SiPMs perform optimally (even better than at room T)

→ excellent alternatives to PMTs in cryogenic applications (eg Noble liquids)

Additional material

Gain and pulse shape

The SiPM equivalent circuit has two time constants:

- $\tau_F = R_{Load} C_{TOT}$ (fast)
- $\tau_Q = R_Q (C_D + C_Q)$ (slow)

F. Corsi, et al. NIMA 572(2007)

Waveform:

The two current components show different behavior with Temperature

(fast component is independent of T because stray C_Q couple with external R_{LOAD} independently of R_Q)

Silicon properties at low T: higher mobility

FIGURE 1.16. Calculated electron mobility due to phonon and ionized impurity scattering mechanisms. The five plots correspond to T = 300, 77, 50, 30, and 4.2 K.

FIGURE 1.17. Calculated electron mobility, due to phonon, ionized impurities, and velocity saturation effects, as a function of the electric field for five temperatures; $N_{ii} = 10^{17} \, \text{cm}^{-3}$.

Silicon propt's at low T: carriers freeze-out

FIGURE 1.14. Calculated electrical resistance of a silicon slab of $(W/L) = 20/50 \,\mu\text{m}$ and depth of 1 μm for different doping concentration levels.

For T<100 K, the ionized impurities act as shallow traps (provided the impurity doping concentration below of 10¹⁸ atoms/cm²) and carriers begin to occupy these shallow levels.

For T<30 K, practically no carriers remain in the bands

Plots from Guiterrez, Dean, Claeys -"Low Temperature Electronics: Physics, Devices, Circuits and Applications", Academic Press 2001

Silicon propt's at low T: impact ionization

For T<77K no data are available → modeling is quite difficult...

FIGURE 1.43. The impact ionization rate α as a function of temperature T_A with the electric field E as a parameter calculated from Okuto and Crowell's (85) model.

Silicon propt's at low T: absorption length

FIGURE 1.53. Experimental (symbols) and fitted (lines) absorption coefficient α of silicon at T=415, 300, 77, and 20 K [replotted from Rajkanan *et al.* (109)].

FIGURE 1.54. Measured absorption coefficient α (\blacksquare) (101) and fitted α (solid line) versus temperature T. On the right axis the fitted penetration depth $(1/\alpha)$ is also shown.

Avalanche breakdown vs T

Fig. 4. Breakdown voltage vs temperature for Si and Ge p-n junctions. $V_B(300^{\circ}\text{K})$ is 2000, 330, and 60 V for Si and 950, 150, and 25 V for Ge for dopings of 10^{14} , 10^{15} , and 10^{16} cm⁻³ respectively. The linear-graded junctions have $V_B(300^{\circ}\text{K})$ the same as those for doping of 10^{15} cm⁻³.

Avalanche breakdown V is expected to show a **non linear dependence on T** (depending of the junction type and doping concentration)

Breakdown V decreasing with T due to increasing mobility

NOTE: in freeze-out regime Zener (tunnel) breakdown could be relevant.

→ negative Temperature coefficient (increasing with decreasing T)

Crowell and Sze

More recent model by Crowell and Okuto after Shockley, Wolff, Baraff, Sze and Ridley.

p-n junction characteristics: forward bias

Fig. 8.16. The current-voltage characteristic of a pn junction

Sze - "Semiconductor devices"

Dark count rate vs T (at fixed gain)

Measurement: **rate of \geq1p.e.** at fixed gain (i.e. \sim fixed Δ V)

T dependence: Dark Rate

Electric field engineering and silicon quality make huge differences in dark noise as a function of T

T dependence: PDE (SPAD/APD devices)

Relative Efficiency (%)

PDE dependence on T

(Over-voltage fixed)

Combination of various effects:

- P₀₁ increases at low T because of increased impact ionizazion
- Optical attenuation length increased (Energy gap increases) at low T
- Depletion region widening in APDs, but not in SiPM which are fully depleted

Similar effect expected also for SiPM

SPAD: Cova el al, Rev.Sci.Instr. 7 (2007)

APD: Johnson et al (RMD) IEEE 2009

Timing vs T (SPAD devices)

Timing: better at low T Lower jitter at low T due to higher mobility

(Over-voltage fixed)

I.Rech el al, Rev.Sci.Instr. 78 (2007)

Setup: vacuum vessel + cryo-cooler

