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Motivations

This talk: characterization of FBK SIPM in the range 50K<T<320K

1) junction forward and reverse (breakdown) characteristics
2) gain, dark current, after-pulses, cross-talk
3) photon detection efficiency (PDE)

Improved SiPM performances at low temperature:

1) lower dark noise by orders of magnitude

2) lower after-pulsing probability (down to ~100K)
3) higher PDE (down to ~100K, depending on A)
4) higher timing resolution

5)

better V stability (w.r.t. to variations of T)

breakdown

- SiPM is an excellent alternative to PMT at low T
even more than at room temperature !!!



Vacuum vessel (P~10-3mbar) EXpe ri mental Setu p

<« —— Alogen Lamp

Monocromator (200-900nm)

\ Quartz filers to

Calibrated Photodiode (outside)

/and to SiPM (inside vessel)

Cryocooler
(50K<T<300K) —a

Amplifier UV LED (380nm)
+ fibers to SiPM 5



Experimental setup

Temperature control/measurement

* Cryo-cooler + heating with low R resistor

* thermal contact (critical) with cryo-cooler head:
SIPM within a copper rod

* T measurement with 3 pt100 probes

* Measurements on SiPM carried after
thermalization (all probes at the same T)

» check junction T with forward characteristic

Voltage/Current bias/measurement

» Keytley 2148 for Voltage/Current bias/readout

_Vb
Pulse measurement in .
¢, R SiPM samples

« Care against HF noise - N‘hv « EBK SiPM runll = 1mm?2

— feed-throughts 1! o Vou Vbr~33V, fill factor~20%
« Amplifier Photonique/CPTA SIPM %Dﬂ ( o °)

(gain~30, BW~300MHz) R ﬁ C,

L



Gain and pulse shape

If R, is high enough the internal current decreases at a level
such that statistical fluctuations may quench the avalanche

iy el (Vaias-Vep)/(Rg+R) =1,

99% recovery time; 51,

The leading edge of the signal is much
faster than trailing edge:

1. 1= RCy<<RCo=1, <+ Recovery time:

2. turn-off mean time is very short Incregses at low T due to polysilico
(if Ry, Sufficiently high, I, ~ 10pA) whilé C,)s independent of T

Gain~C_ AV - independent of T
at fixed Over-Voltage (AV)



-V measurements: forward bias

1)

@Forward current JFNexp(Vdnk—T

Diffusion dominating: n » 1
Recombination dominating: n —» 2

@ Ohmic behavior at high current
<“

Linear fit » R ~ RQ/ N

series cells

3 Voltage drop (V,) increases
with T decreasing (e.g. at 1pA)



-V measurements: forward bias

Voltage drop at fixed forward current —» precise measurement of junction T
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» linear dependence with slope dV_/dT|, , ~ 3mV/K
e precise calibration/probe for junction Temperature



Series Resistance vs T

1) Fit at high V of forward characteristic -~ measurement of series resistance R,

2) Exponential recovery time (afterpulses envelope) - measurement of R_

10° o
The two kinds of measurement
are consistent
a4a > -
/0 dus - dominant effect from
, quenching resistor R,
o fit |fwd-V
. = fit exp recovery
l‘ [ ®
/ NOTE: afterpulses envelope
. " Overlap of wavef S
0.05 | ‘ ‘» /
s 01 ‘r v
1us | g0 \ Recovery time exponential
50 75 100 I25 150 75 200 225 250 275 300 OOZZ /
T(K) / u
0.3 | After-pulsing
-0.35 more probable at short delays

Time (s



-V measurements:

reverse bias

vbreakdown vs T
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At high T ~80 mV/K

o | (fit above 240K) /
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Fit: linear + quadratic (V > Vbr) /
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Avalanche breakdown voltage decreases due to increased

carriers mobility at low T

T(K)




V breakdown vs T

S /! Consistent with Baraff model
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Dark current vs T at constant gain (i.e. fixed AV)

I (nA)

Main noise mechanisms:

| 1) Gereration/Recombination
noise (SHR field enhanced)

CB

—E
reverseoc T1.5 exp =
Kg T

2) Band-to band Tunnel noise
(strong dependence on the
Electric field profile)

50 100 150 200 250 300
T(K)

Tunnel noise dominating
for T<200K (FBK devices)



Dark counts rate vs T at constant gain (i.e. fixed AV)

Durk Rate (Hz)
S

b
L]
L

o AV~2.0V

- o AV~1.5V

Measurement: rate of =1p.e.
at fixed gain (i.e. ~fixed AV)

Activation energy
Eg~0.358eV

Two tunneling mechanisms ?
to be understood

300 350

50 00— 150—

250

T (K)
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After-pulsing

Carrier trapping and delayed release
exp(—t/T)

C

P t) = P Py, = AV?
¥
P,, : trigger probability

« AV(t) (over-voltage, recovery)

after —pulse (

T : trap lifetime

g g ; | | i quadratic
- epends on trap level position
P_: trap capture probability P P p/, dependence
. . on AV
« carrier flux (current) during avalanche « AV (over-voltage)
« N traps =
1 0100 : . Temperature (°C) Q
experimental data L] 20 0 -20 —
) fit —— E T T T ] N
Fast main . ] =
, components g E Ll
*g 10107 | - L — ~ L
8 i T Suw
= F 3 8=
E : : o
Z qoxo?} : K] = . — g
- & 3 O ©
Ny N i > Q
- o =
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Fig. 10. Spectrum of the delay time from the primary pulse to the after-pulse. 1000/T (K)

It can be reduced to % in a wide AV range... at 300K



After-pulses x100 (in 5us)_
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After-pulses vs T (constant gain, ie AV)

o AV~2.0V
e AV~1.5V
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*Several % below 100K

T<100K: new traping centers active
(to be studied in more detail)

400
T'(K)

Measurement:

of average number of after-pulses
counted in the 5us time window
following the trigger (1 p.e.)

at fixed gain (i.e. ~fixed AV)

(dark noise subtracted)

e Few % atroom T
e quite constant down to ~120K

T decreasing: increase of
characteristic time constants of

traps (1,,,.) is compensated by
increasing cell recovery time (R,)
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AV scan (fixed T) - DR, AP, Gain, X-TALK

Dark Noise Rate After-Pulsing

/decreasing at low T / increasing at low T

Gain and

i

Gain and Cross-Talk independent of Temperature
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PDE vs AV and A (room T)

PDE

devicewithe  ~50%

035
[~ oo PDE dependence on AV
= | — L=A25Tm I
N e (at different A)
0z | — '|:=475m‘ Linearity below
__ Lssom | AV~3V
015 -
01 - *  Saturation starts
05 | above AV~3V
o 1 T T T 1
30 31 2 33 A 35
Bies \oitage (V)
device with 80@(,{ ~22%
) =)
18 * 1.5V overvoltage
16 1 adiit 2.0V overvoltage
14 ] L -‘“m“...."-.. 2.5V overvoltage
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121 . ...-' W "...- 3.5V overvoltage
:; 10 ._0' ..”M ’0.,.'. "-.... * 4.0V overvoltage PDE dependence On )\
[ . _ » * ...’0 ....I. .
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6 - o' popresssesesessisesssine *
41 Lo
1 e ad
0 7
300 400 500 600 700 800 90C
Re d uc ed bec ause wavelengths (nm)
avalanche triggered Reduced because
by holes (and ARC) low QE
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PDE at various A - AV scan (at constant T)

PDE vs AV measured as Current/Gain -» PDE (a.u.) =1,/ |_,./ AV
Normalization to calibrated photo-diode current (not absolute # of photons)

E
o
L
()]
o
AV (V) AV (V) AV (V)
. and 123K measurements not affected by after-pulses — saturation visible

55K affetcted by after-pulses (not corrected; cross-talk is not subtracted too)

(Dark rate subtracted - small effect)

17



PDE with LED (380nm) - AV scan (const. T)

2000 -

1500

1000+

500 -

380 nm
295K

55K

| PDE (a'u') = ISiPM / ILED/AV

* 55K affected by After-Pulses
« 295K less affected by A-P
(Dark rate subtracted)

— Slope PDE/AV (at small AV)
independent of T

5 AV (V)
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PDE with LED (380nm) - T scan (AV=2V)

PDE dependence on T at fixed gain. Normalization with PDE at T=300K

PDE (T) =

2

1.8

I.6

1.4

1.2

PDE(T) / PDE(300K)

0.8

0. 6

0.4

0.2

Studies ongoing for better understanding this shape

lsion (T) /5

i :
onset of carriers

freeze-out

-
related to the increase of impact ionization
coefficient ? (higher avalanche probability )

-
related to the increase of recombination ?

(higher losses in charge collection )

50

f00

150

200

250

300
T (K)

Enhancement
of PDE at
short A is seen
also in SPAD
devices

Drop here:
seen also with
APDs in
proportional

regime
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PDE at various A - T scan (AV =2V)

PDE dependence on T at fixed gain. Normalization with calibrated

photo-diode current and with PDE at T=300K (double ratio)

PDE(T) / PDE(300K)

PDE(T) / PDE(300K)
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ISiPM (T) / IcaIibrated P-D

PDE (T)

* shape similar at different A = related to properties of multiplication /recombination
* lower efficiency at low T for longer A = due to absorption length ~ 1/T
(with constant depletion width)
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Conclusions

A few sets of measurements in DC and pulse mode show that SiPM
behave quite well at low T:
 Breakdown V decreases non linearly with T
— stability of devices wrt T is even better at low T
 Dark rate reduced by orders of magnitude
- different (tunneling) mechanism below ~200K
e After-pulseing increases swiftly below 100K
e Cross-talk and Gain (detector capacity) are independent of T (at fixed Over-V.)
* PDE higher than at T room at low T for short A

Additional measurements on-going with very short pulsed laser for

e accurately measuring after-pulsing characteristic time constant(s) vs T

e cross-checking PDE (with pulsed method)

e measuring timing resolution vs Temperature (expected to improve at low T)
e check gain resolution at low T

Studied on-going in modeling (for better understanding) After-Pulsing and PDE
In summary:

in the range 100K<T<200K SiPMs perform optimally (even better than at room T)
- excellent alternatives to PMTs in cryogenic applications (eg Noble liquids)

Acknowledgments: E.Johnson, A.Baldini, A.Brez, G.Signorelli 54



Additional material
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Gain and pulse shape

The SiPM equivalent circuit has
two time constants:

o T.=R___, Cor (fast)
* Ty, = Ry (C+Cy) (slow)

F. Corsi, et al. NIMA 572(2007)

H.Otono, et al.
PD0O7 Conference

----————————
1l
@

8
____________ I
Firing Other Parasitic
microcell microcells grid
capacitance
Waveform:

The two current components show
different behavior with Temperature

(fast component is independent of T
because stray C, couple with

external R ,,, independently of R))

23
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FIGURE 1.16. Calculated electron mobility due to phonon and ionized impur-
ity scattering mechanisms. The five plots correspond to T = 300, 77, 50, 30, and
42K,

Silicon properties at low T: higher mobility

Electric field, E | Vicm)

FIGURE 1.17. Calculated electron mobility, due to phonon, ionized impurities,
and velocity saturation effects, as a function of the electric field for five
temperatures; N;; = 10" cm ™",

Silicon propt's at low T: carriers freeze-out
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FIGURE 1.14. Calculated electrical resistance of a silicon slab of (W/L) = 20/
50 g and depth of 1 ym for different doping concentration levels.

For T<100 K, the ionized impurities act as shallow
traps (provided the impurity doping concentration
below of 10'® atoms/cm?) and carriers begin

to occupy these shallow levels.

For T<30 K, practically no carriers remain in the bands

Plots from Guiterrez, Dean, Claeys -
“Low Temperature Electronics: Physics,
Devices, Circuits and Applications”,
Academic Press 2001
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Silicon propt's at low T: impact ionization
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For T<77K no data are available -» modeling is
quite difficult...

FIGURE 1.43. The impact ionization rate x as a function of temperature T', with
the electric field E as a parameter calculated from Okuto and Crowell's (85)

model.
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FIGURE 1,53. Experimental (symbols) and fitted (lines) absorption coefficient
a of silicon at T = 415, 300, 77, and 20K [replotted from Rajkanan et al. (109}].

Silicon propt's at low T: absorption length
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FIGURE 1.54. Measured absorption coefficient o (W) (107} and fitted « (solid
line) versus temperature T. On the right axis the fitted penetration depth {1/}
is also shown.
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Avalanche breakdown vs T

|

Si ABRUPT JUNCTIONS
————  G& ABRUPT JUNCTIONS

S LINEARLY —GRADED JUNCTIONS
2.5

N
i

BACKGROUND DOPING (cm™ %) w0 /

Vg/ Vgl300°K)

Avalanche breakdown V is expected to
show a non linear dependenceon T
(depending of the junction type and
doping concentration)

Breakdown V decreasing with T due to
increasing mobility

NOTE: in freeze-out regime Zener
(tunnel) breakdown could be relevant.
- negative Temperature coefficient
(increasing with decreasing T)

Crowell and Sze

More recent model by

it =
Gel9xio'® cmk
== SitEx 108 cm—%)
o5~ —
‘\|\
i i i i
O 100 200 300 400 S00 600
Ti*K)

Fig. 4. Breakdown voltage vs temperature for Si and Ge
p-n junctions. V(300°K) is 2000, 330, and 60 V for Si and 950,
150, and 25 V for Ge for dopings of 10", 10'%, and 10'%* ¢m—?
respectively. The linear-graded junctions have Vyi(300°K) the
same as those for doping of 10'* cm™%.

Crowell and Okuto after Shockley,
Wolff, Baraff, Sze and Ridley.
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p-n junction characteristics: forward bias

Fig. 8.16. The current-voltage charac-
teristic of a pn junction

]I'_'|"" —

b

— _diffusion
= ot 'm=1 dominating

(i recombination
dominatin
r i J
1o ; - M T
0D 2 04 06 08 IO
'FFI"-':I

Sze - “Semiconductor devices”

E.Johnson (RMD) at IEEE 2009
“Characterization of CMOS APD at cryogenic T”
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Dark count rate vs T (at fixed gain)

—
=
[

Dark Rate (Hz)

b
=
L

10

o AV~2.0V Measurement: rate of =1p.e.
® AV~1.5V at fixed gain (i.e. ~fixed AV)
¢
.
"CC'
. ‘; QJUE
. . o o i )
6 8 10 2 14
1000/T (1000/K)
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Dark Rate (Hz)

T dependence: Dark Rate

MePHY/Pulsar

Hamamatsu 10’
0 10’ o 1510
RN | 2510
< + 4510
Ui : :
TR : i) + 65410
ﬁ 10’
o s lia — _::
10 —
Tunneling I o "-—-:‘
i’ L
03 Il 1.3
Overvoltage (V) 10 1T, K
H.Otono - PDO7 Dolgoshein et al, NIM A 442 (2000)

Electric field engineering and silicon quality
make huge differences in dark noise as a function of T



T dependence: PDE (SPAD/APD devices)

SPAD: Cova el al, Rev.Sci.Instr. 7 (2007)

PDE dependenceon T

(Over-voltage fixed)

Combination of various effects:
« P,, increases at low T because of

increased impact ionizazion

* Optical attenuation length increased
(Energy gap increases) at low T

* Depletion region widening in APDs,
but not in SiPM which are fully depleted

Similar effect expected also for SiPM
APD: Johnson et al (RMD) IEEE 2009



Timing vs T (SPAD devices)

Timing: better at low T | |
Lower jiitter at low T due to Time resolution of

higher mobility SPAD (Cova et al.)

(Over-voltage fixed)

I.Rech el al, Rev.Sci.Instr. 78 (2007)



Setup: vacuum vessel + cryo-cooler

Vacuum

Acknowledgments: A.Brez, A. Baldini, G.Signorelli (Pisa) cryo-cooler

SiPM's are in thermal contact with a cooled Cu rod 32
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