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Introduction

• Monolithic pixel detectors in high-voltage CMOS technology
• Main features:
• Easy to implement (standard CMOS technology used), radiation hard and 

fast
• Allow in-pixel signal processing (CMOS)
• Can be very thin (thinner than 50 µm)
• Possible applications: particle tracking in the case of high occupancy and 

harsh radiation environment such as in LHC (upgrade)
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Introduction

• First test beam results
• First irradiation results

FRM II

CERN (SpS)

DESY
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<-60V

High-voltage monolithic detectors

0V

1. Idea – use high-voltage P/N junctions
as sensor

2. Idea – place the (CMOS) electronics 
inside the N-well

☺ Collection speed
☺ Radiation hardness

10 µm tcoll<<100ps

MAPS (as comparison)

High-voltage monolithic detectors

drift

diffusion
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High-voltage monolithic detectors

1. Idea – use high-voltage P/N junctions
as sensor

2. Idea – place the (CMOS) electronics 
inside the N-well

☺ Collection speed
☺ Radiation hardness

MAPS (as comparison)

High-voltage monolithic detectors

drift

Rad. damage

Rad. damage
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HVD types

RO chip

Binary information

Analog information

Analog information

Type A
Binary readout

Type B
Analog readout
Rolling shutter 

addressing

Type C
Capacitive 

readout

Similar to 3D detectors!!!
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HVD types

RO chip

Binary information

Analog information

Analog information

☺ In-pixel signal processing
☺ Time measurements possible (fast 

readout)
☺ Leakage current compensation (+ rad. 

hardnes)

L Larger pixels 
L Larger capacitance
L Static current consumption

☺ Smaller pixels
☺ Smaller capacitance
☺ No static current consumption

L Time measurements not possible
L Leakage current added to signal (- rad. hardnes)

☺ Any kind of in-pixel signal processing 
possible (hybrid detector)

☺ Radiation tolerant layout can be easily 
implemented

L Slightly increased noise because of 
capacitive transmission

Testbeam!!!
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Type A

FFComparatorCR-RC

4-bit tune DAC
Readout bus

CSA

N-well

AC coupling

Bus driver

3.3 V

-60 V P-substrate

RAM

40 µm 15 µm

220 fF (50 e ENC measured)
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Type A
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10-60 V P-substrate

Type B

Readout bus

N-well

AC coupling

3.3 V 2 V

ResetNWB

SelB

ResB

9 µm 12 µm

10 fF (90 e ENC L measured)
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Type B
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Type C

CR-RC

CSA

N-well

AC coupling

3.3 V

-60 V P-substrate

RAM

35 µm 15 µm

100 fF (system: 80 e ENC measured) – sensor 30 e ENC!

Readout chip
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The “Taki” chip

• 128X128 pixel-matrix – pixel size 21X21µm2

• The chip can be easily scaled to 4 or 16 times larger area
• Fast digital readout – designed for ~50 µs frame readout time (164 µs tested)
• 128 end-of-column single-slope ADCs with 8-bit precision
• Low power design - full chip 55mW (only analog)
• Radiation hard design
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ADC

R
ow

-control („Sw
itcher“)

Digital output

10000001000

§ Pixel size: 21 X 21 µm
§ Matrix size: 2.69 X 2.69 mm (128 X 
128)
§ Possible readout time/matrix: ~50 µs 
(400ns/row)  (tested so far 1.28 µs/row)
§ ADC: 8 – Bit
§ Analog power: 54.9mW (7.63mW/mm2)
§ Analog power: ADC: 0.363mW/ADC 
(90µA+10 µA)

8 LVDS

Counter

Amplifier

Comparator

Latch

Ramp gen.

Chip structure

Pixel matrix
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ADC

Difference Amplifier S/H Amplifier S/H AmplifierSwitches

ComparatorLogic Counter Pixels 

Current source

Ramp

Difference amplifier

Bricked pixels

Guard ring

§ Switched capacitor amplifier
§ Single slope ADC
§ Asynchronous 8-bit counter

21 um
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(Problem with the) difference amplifier

The amplifier oscillates under standard bias conditions L
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Noise (present and future)

Amplifier Noise : 57 eFollower noise meas : 24 e

Reset noise meas: 65 e

Reset noise theory : 42 e

DKS

Better design

Reducing of ENC from 90 e to 30 e is realistic - > all S/N ratios will be increased by factor 3

10 e
Better design

10 e

The ENC is mainly caused by the readout electronics

0 e
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Test system

FPGA

Bias voltage “generators”

USB

Trigger connector

48 MHz

Power (FPGA)

§ Very simple detector test system – a single PCB
§ Only 4 external voltages needed, high voltage is generated by batteries
§ USB 1 communication with DAQ PC

Radioactive s.

Power (det.)
HV
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FPGA

Matrix
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Pixel detector FPGA PC

From TLU
RAM

S

receiver

Reset values

Del

DKS mode, frame mode- or zero suppressed cluster readout

Pedestal and reset-offset subtraction

Zero suppresion

Cluster readout

RO FIFO

RO FIFO (frame m.)
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Test beams with EUDET telescope

Test beam DESY

Test beam CERN

EUDET telescope
DUT

DUT
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Test beams with EUDET telescope
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Results – MIP signal
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MIP spectrum (CERN SpS - 120GeV protons)
The signal increases from 1200 e (single pixel) to 2200 e (6-pixel cluster)
The measured S/N ratio varies from 12.3 (single pixel) to 9.8 (6-pixel cluster)
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Results – signal
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55Fe peak

Comparison between 60Co and 120GeV proton spectra
60Co signals higher by 10% - expected from theory due 
to lower particle energy
Seed pixel sees about 50% of the total signal
The next MSP sees only 25% of the seed pixel signal
Cluster size is 6 pixels
Moderate charge sharing (the seed gets the most)
Do we expect this? – the gaps between n-wells are 
large, the most of the particles hit the gaps

As comparison 55Fe
Seed pixel sees about 90% of the total signal
Cluster size is 3 pixels
No charge sharing
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6 pixel cluster
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Primary and secondary signal (explanation of the measured spectra)

The drift leads to the primary signal P – this signal portion is not shared between pixels, it is 
collected in the pixel next to the particle hit point
The diffusion of the electrons generated in the non-depleted bulk is the secondary signal 
mechanism

Direct hit Hit between the pixels (occurs quite often)
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P measured with type A det. – good agreement
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Is there sharing of primary signal?

Is there sharing of primary signal?
Such clusters could be lost after applying the seed cut…

Do we have gaps with zero E-field? (Moreover, 
they could be insensitive to particles)
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Fe-55 (explanation of the measured spectra)

No charge sharing A small part of the signal is seen by the next pixel

Seen very seldom Seen very seldom
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Gap investigation

Do we have gaps with zero E field?

If yes, there will be a certain number of clusters with two equal seeds
COG correction should be then 0.5 pixel size
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CoG correction distribution in pixel frame of reference
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The COG correction distribution is not homogenous inside a pixel due to 
reduced charge sharing – the small CoG correction values occur more 
frequently
Large CoG values occur very seldom => there are no sensitive gaps 
with E=0 but… the gaps could be insensitive

Or the clusters with two equal seeds
could be lost after applying the seed cut…

In-pixel CoG coordinate [mm]

Number of clusters

Pixel centre: (0.0105, 0.0105)
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Efficiency
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Efficiency is the answer but…
Efficiency is homogenous over the matrix area and saturates at 86% for low seed/cluster thresholds

Efficiency
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Track and system geometry

Scintillator Scintillator

Telescope planes DUT
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(Irregular events) double track event

Out of time track – not seen by DUT

In time track – seen by DUT
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(Irregular events) empty event

In time track – not seen by Mimotel
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(Irregular events)  double track event seen as a single track event

Out of time track – not seen by DUT In time track – not seen by Mimotel
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Efficiency (conclusions)

• Efficiency lower than 100% probably due to timing issues
– Readout of telescope and DUT are not synchronous
– DUT integration (readout) time 164 µs
– Telescope integration time = 800 µs
– Large cluster and track multiplicity in telescope
– multiple tracks in telescope due to high beam intensity and long integration time
– Small cluster multiplicity in DUT due to shorter integration time

• Some “out of time” particles hit the telescope after the trigger moment (during the readout) – the 
particles are not seen by the DUT due to wrong timing

• Neglecting of all multiple track events increases efficiency from 72% to 86%
• Problem: A part of scintillator outside the telescope area: some out of time tracks are seen as 

single tracks by telescope. If we were able to filter these out of time tracks too, we would
probably measure a better efficiency
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In-pixel measurements – back-propagation

Alignment

Back-propagation

Excellent spatial resolution of the EUDET telescope 
allows the investigation of DUT properties as function of 
the in-pixel hit point
We performed series of such n-pixel measurements
The fitted coordinate is back-propagated to the DUT 
frame of reference and DUT pixels frame of reference
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In-pixel CoG

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020
-0.006

-0.004

-0.002

0.000

0.002

0.004

TEL: fitted hit position in y [mm]

• CoG correction works but the slope is too small (by factor ~ 3) probably due to absence of charge 
sharing (primary signal) and noise (Eta-correction does not lead to better results)

• Good check of the back-propagation tool

In-pixel position
Pixel centre: 0.0105 mm
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In-pixel efficiency
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There are no insensitive regions! => There are no E=0 gaps!

In-pixel position
Pixel centre: (0.0105, 0.0105)



39

Spatial resolution
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• Spatial resolution
• Sigma residual X: 7.3 µm
• Sigma residual Y: 8.6 µm
• The difference is probably caused by the bricked pixel geometry – still not understood completely, 

simulations will be done
• The spatial resolution is not as good as in the case of standard MAPS due to absence of charge

sharing in the case of primary signal
• It is not completely clear why is the resolution worse than 21 µm /sqrt(12) = 6.1 µm
• The residual is sometimes larger than the pixel pitch.
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Seed pixel – fitted hit point mismatch

• The back-propagation (in pixel measurements) show that the fitted hit point (measured by the 
telescope) is sometimes outside (in the next pixel) of the seed pixel.

• This mismatch worsens the spatial resolution
• The fitted hit point – seed pixel mismatch occurs more probably when fitted point is near the pixel 

boundary
• The mismatch seems, however, not to be caused by the electronic noise

DUT seed

x [mm]
y [mm]

predicted seed

telescope
fits
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Seed pixel – fitted point mismatch (clusters and their pixel S/N)
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A few clusters when the fitted point is outside the seed pixels are shown – the seed pixel amplitude 
(S/N amplitude) is always very high – there is little chance that we have chosen the wrong seed due 
to electronic noise.
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fittedreal track

Seed pixel – fitted point mismatch

The mismatch seems to be caused by the measurement-setup uncertainties, e.g. mechanical 
instability, multiple scattering on PCB “vias”.

1.3mm

Cu

predicted error

PCB

Via

Chip
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Summary (test beam)

• Efficiency: 86%
• Purity: 72%
• Sigma X-residual 8.6 µm
• Sigma Y-residual 7.3 µm
• S/N ratio seed: 12.3
• S/N ratio cluster (6 pixels): 10
• There is little charge sharing – the seed pixel receives 50 % or more of the total signal
• There are no insensitive regions
• Spatial resolution worse than expected probably due to MS, to be understood 
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Irradiation

Irradiation with neutrons has been performed by Franz M. Wagner at FRM II -
“Forschungsneutronenquelle Heinz-Maier-Leibnitz” http://www.frm2.tum.de/
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Irradiation with neutrons (1014 neq) – signal (Type A)
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After irradiation to 1014 neq the seed “MIP” (most probable 60Co) signal is 1000 e and the cluster signal is 
1300 e – the real MIP is by about 10% lower
The measurement has been performed at 0C
Leakage current / pixel increases from 350 fA to 130 pA
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Irradiation with neutrons (1014 neq) – noise (Type C)
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Irradiated chip (1015 neq), 55Fe spectrum, room temperature

§ Type C detector, 55Fe spectrum
§ Excellent noise performance after irradiation
§ No clustering possible with this detector
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Summary

Type B (10 fF detector capacitance, 21 µm x 21 µm pixel size)
• Signal: 

– not irradiated: 1200 e (seed) to 2200 e (cluster) (MIP)
– Irradiated to 1014 neq : 1000 e (seed) to 1300 e (cluster) (60Co)

• Noise: 90 e (not irradiated) – the high noise is the result of non-optimal design, will be 
reduced by new design (the chip has already been submitted)

• Type A (220 f detector capacitance, 55 µm x 55 µm pixel size)
• Signal:

– Not irradiated: 1700 e (MIP) (good agreement with type B) 
– Noise 55 e at 110 ns shaping time

• Extrapolations for type A:
• Signal after 1014 : 1200 e (MIP)
• Signal after 1015 : 800 e
• Type C (100 f detector capacitance, 50 µm x 50 µm pixel size)

– Noise after 1014 neq : 60 e (longer shaping times) (room T)
– Radiation hardness of more than 2 MRad tested

• Future plans: irradiation to at least 1015 neq and 50 MRad
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Thank you


