

Overview

- The Silicon Drift Detectors in ALICE
- Detector calibration during last year's data taking period
 - → drift speed
 - ⇒ charge calibration
- Results from cosmic and pp runs
- Summary

Feb. 15th, 2010 VCI 2010

The Alice Experiment

The Inner Tracking System

Silicon Pixel Detector (SPD):

- ~10M channels
- 240 sensitive vol. (60 ladders)

Silicon Drift Detector (SDD):

- ~133k channels
- 260 sensitive vol. (36 ladders)

Silicon Strip Detector (SSD):

- ~2.6M channels
- 1698 sensitive vol. (72 ladders)

The Silicon Drift Detector

Feb. 15th, 2010 VCI 2010

The Drift Sensor

The SDD Sensor in ALICE

SDD Sensor Summary

```
Sensitive area
Anode pitch
HV (nominal)
Bias voltage (MV)
Drift velocity
Av. resolution (z) (*)
Av. resolution (r\phi)^{(*)}
(*) from beam test
```

```
70.17 x 75.26 mm<sup>2</sup>
294 μm
-1800 V
-40 V
-6.5 μm/ns
25 μm
35 μm
```

Front-end Electronics

PASCAL (Preamplifier, Analog Storage and Conversion from Analog to digital) (64 channels each)

- preamplifier
- analog storage
- ADC
- @ 20 or 40 MHz

AMBRA (A Multievent Buffer Readout Architecture) (input from PASCAL)
• digital multibuffer

- anode-by-anode baseline equalization
 non-linear data compression (10 to 8 bits)

SDD cooling

- Water cooled, inside pressure < 1 bar (leak safe), flow in intermediate state between laminar and turbolent (maximum heat transfer)
- Controlled by dedicated PLC

Bad channels map

- During p-p data taking (end of 2009)
 - 16 modules (out of 260) out of DAQ due to FEE or HV problems
 - 4 modules with I hybrid disconnected (1/2 of channels dead)

VCI 2010

Feb. 15th, 2010

11

SDD Calibration

3 run types to extract calibration parameters

- PEDESTAL run
 - Analyzes special SDD calibration runs taken without zero suppression during LHC fill periods (every <24h)
 - Provides: Baselines, Noise, Common Mode Corrected Noise, Noisy anodes
- PULSER run
 - Analyzes special SDD calibration runs taken with Test Pulse signal to front-end electronics during LHC fill periods (every =24h)
 - Provides: Anode gain, Dead anodes
- INJECTOR run
 - Analyzes injector events collected with special runs every = 6 hrs
 - Plan to improve by collecting injector triggers every = 10 mins. during physics runs
 - Provides Drift speed (anode dependent)

Drift Speed Measurement

- 33 (I each 8 anodes) x 3 MOS injectors on each half module
- Drift speed is extracted from a fit of the measured drift time vs. the known drift distance

- Drift speed depends on anode number
 - \Rightarrow inversely proportional to temperature ($\propto T^{-2.4}$)
 - heat sources (voltage dividers) located on module edges

Temperature vs. Module

- Drift speed depends on
 - Dopant concentration
 - Temperature

$$v_{drift} = \mu_e E$$
 , $\mu_e \propto T(K)^{-2.4}$

$$T(K) = 293.15 \cdot \left(\frac{v_{drift}/E}{\mu_e^{293K}} \right)^{2.4}$$

Drift Speed vs. Time

Remarkable overall stability during p-p runs

SDD Correction Maps

- All 260 modules fully characterized before assembling in ladders
 - charge injected in >100,000 positions using an infrared laser
 - for each laser shot, compute residual between reconstructed and original coordinate
 - maps of systematic deviations of drift coordinate (due to non-linear voltage divider or dopant concentration inhomogeneities) to be used to correct the time coordinate at reconstruction phase

SDD Charge Calibration

Distribution of cluster charges from cosmic tracks, fitted with a Landau function

Possibility to obtain with good precision the conversion factor ADC units to keV (most probable value for energy deposition of a MIP in 300 μ m

of silicon: 84 keV)

Charge vs. Drift Distance

Cluster charge depends on drift distance

• larger drift distance \Rightarrow larger charge diffusion \Rightarrow wider cluster tails cut by the <u>zero suppression</u>

quantitatively reproduced with MonteCarlo simulations

crosschecked with cosmic muons collected with and without zero
 suppression with a test setup

 can be corrected at reconstruction phase

SDD dE/dx

- For more than 85% of the modules, the dE/dx distributions have the MPV within 5% from the expected value of 84 KeV
 - Charge Collection Efficiency completely under control
 - Special correction needed only for 15 modules with lower CCE, all of them traced-back to hardware problems (applied voltages, silicon purity)

ITS dE/dx

Truncated mean from SDD+SSD dE/dx vs. track momentum

SDD data taking during injection tests

SDD data taking during injection tests

SDD data taking during *pp* collisions

Summary

- 94% of SDD modules were in acquisition in 2009
- Data from cosmic events were collected to debug and monitor the system
- Frequent calibration runs were performed to proper measure of noise, gain and drift speed
 - stability of all monitored parameters (drift speed in particular)
 - charge calibration and efficiency as expected
 - detector behaviour well understood and under control
- SDD were in acquisition since very first LHC collisions, and are ready for the forthcoming long data taking period

Backup

SDD Module Readout

End-ladder electronics

CARLOS (Compression And Run Length encOding Subsystem)

• 8 inputs fed in parallel by AMBRAs

• I CARLOS per SDD module

• 2D 2-threshold compression

• format data and feed the DAQ R/O

Drift Speed stability

- Drift speed constant on a time scale of I hour of data taking
 - about 5 triggers/minute, 200 analyzed events from a raw data file

Drift Speed vs. Time

Layer 3, Ladder 6, Mod 275, Anode 200

Pedestal Run

Pulser Run

