Eríka De Lucía for the KLOE-2 Inner Tracker Group

Status of Cylindrical-GEM project for the KLOE-2 Inner Tracker

The KLOE-2 Inner Tracker Group

- G. De Robertis, N. Lacalamita, R. Liuzzi, F. Loddo, M. Mongelli,
- A. Ranieri, V. Valentino

INFN Bari, Bari, Italy

G. Morello, M. Schioppa

INFN Cosenza, gruppo collegato LNF, Cosenza, Italy

- A. Balla, G. Bencivenni, S. Cerioni, P. Ciambrone, E. De Lucia,
- D. Domenici, J.Dong, G. Felici, M. Gatta, M. Jacewicz, S. Lauciani,
- V. Patera, M. Pistilli, L. Quintieri, E. Tshadadze

Laboratori Nazionali di Frascati - INFN, Frascati, Italy

A. Di Domenico, M. Capodiferro, A. Pelosi

INFN Roma, Roma, Italy

KLOE at DADNE &-factory

- •4 m diameter 3.3 m length
- •90% helium, 10% isobutane
- •12582/52140 sense/tot wires
- All-stereo geometry

 $\sigma_{r\phi} = 150 \,\mu\text{m}$ $\sigma_z = 2 \,\text{mm}$ $\sigma_V = 3 \,\text{mm}$ $\sigma_p/p = 0.4 \,\%$

 $\lambda_{KS} = 0.6$ cm

 λ_{KL} = 340 cm

 $\lambda_{K\pm} = 95 \text{ cm}$

- Lead/scintillating fiber
- 98% coverage of solid angle
- 88 modules (barrel + end-caps)
- 4880 PMTs (two side read-out)

B = 0.52 T

6 m

$$\sigma_{\rm E}/E = 5.4\%/\sqrt{E(GeV)}$$

$$\sigma_t = 54 \text{ ps}/\sqrt{E(GeV)}$$

⊕ 50 ps(calib)

KLOE-2 Inner Tracker Upgrade

For fine vertex reconstruction of K_s , η and η' rare decays and

K_s- K_L interference measurements :

- $\bullet \sigma_{r\phi} \sim 200 \ \mu m \ and \ \sigma_z \sim 500 \ \mu m$
- **❖ low material budget**:<2%X₀
- ❖ 5 kHz/cm² rate capability

Cylindrical GEM detector is the adopted solution

- ◆ 5 CGEM layers with radii from 13 to 23 cm from IP and before DC Inner Wall
- ◆ 700 mm active length
- ♦ XV strips-pads readout (40° stereo angle)
- ◆ 1.5% X₀ total radiation length in the active region with Carbon Fiber supports

Cylindrical Triple GEM

 $K_S \rightarrow \pi \ \pi$ vertex resolution will improve of about a factor 3 from present **6mm**

The IT with CGEM technology

The **CGEM** is a *low-mass, fully cylindrical* and *dead-zone-free* GEM based detector: **no support frames are required inside the active area**The main steps of the R&D project:

- 1. Construction and complete characterization of a **full scale CGEM prototype**
- 2. Study the XV strip readout configuration and its operation in magnetic field
- 3. Construction and characterization of a large area GEM realized with the new single-mask photolitografic technique (KLOE2 IT needs GEM foil as large as 450x700mm²)

<u>Technical Design Report of the Inner Tracker for the KLOE-2 experiment</u> [arXiv:1002.2572]

(1) CGEM prototype: construnction

- 1. Distribution of epoxy on foil edge
- 2. 3 spliced foils ~1000mm long
- 3. Cylindrical mould in vacuum bag
- 4. Cylindrical GEM foil
- 5. Cylindrical Cathode with annular fiberglass support flanges

Proto0.1: Ø=300mm,L=350mm; 1538 <u>axial strips</u>, 650 μm pitch

GASTONE: the IT dedicated FEE chip

Sensitivity (pF)	20 mV/fC
Z _{IN}	400 Ω (low frequency)
C _{DET}	1 – 50 pF
Peaking time	90 – 200 ns (1-50 pF)
Noise (erms)	800 e ⁻ + 40 e ⁻ /pF
Channels/chip	64*
Readout	LVDS/Serial
Power consum.	≈ 0.6 mA/ch

- Mixed analog-digital circuit (KLOE-2 dedicated);
- Low input equivalent noise, low power consumption and high integrated chip;
- ❖ 4 blocks: •charge sensitive preamplifier
 - shaper
 - leading-edge discriminator (prog. thr.)
 - monostable (stretch digital signal for trigger)

0.35 CMOS technology- no Rad-Hard

16-chs GASTONE prototype

(1) CGEM prototype: test-beam

Gas: $Ar/CO_2 = 70/30$

Fields: 1.5/2.5/2.5 /4 kV/cm

 V_{GEM} : 390-380-370 =1140V, gain~2·10⁴

FEE: 16-channels GASTONE [NIMA 604 (2009)]

Trigger: 2x8-MDT stations -- External Tracking

Overall detector stretching load 50 kg

Spatial Resolution [NSS Conf. Rec.(2009)]

 $\sigma(GEM) = \sqrt{(250 \mu m)^2 - (140 \mu m)^2} \sim 200 \mu m$

(2) XV readout and magnetic field

A 10x10 cm² Planar GEM w/650 μ m pitch XV strips has been realized and tested in magnetic field:

- X-view will provide r-φ coordinate in CGEM
- V-view made of pads connected by internal vias and with ~40°stereo angle
- XV crossing will provide z coordinate in CGEM
- readout w/GASTONE

(2) XV readout and magnetic field

The effect of the magnetic field is *twofold*: a *displacement* (dx) and a *spread* of the charge over the readout plane (effect visible only on the "bending plane")

(2) XV readout: test beam

- ❖ H4 beam-line at CERN-SPS: 150 GeV pions
- ❖ Goliath Magnet: dipole field up to 1.5T in a ~3x3x1m³
- Semi-permanent setup for RD51 users

Gas: $Ar/CO_2 = 70/30$

Fields: 1.5 - 3.0 - 3.0 - 5.0 kV/cm

 V_{GFM} : 390-380-370 = 1140V,

gain~2·104

FEE: GEMs partially equipped with 22

GASTONE boards

Trigger: 6 scintillators with SiPM (3

upstream, 3 downstream)

External Trackers: 4 planar GEMs

w/650 µm pitch XY strips

(2) B-induced displacement

In our configuration the magnetic field effect is mainly present on the X-view

- Align the setup with B = 0
- Turn on B field
- Track reconstruction using the 4 X-Y GEMs (<u>likewise oriented</u>)
- Measure the displacement on the X-V GEM (reversed wrt the other GEMs)

$$\mathbf{D} = \mathbf{2} \times \mathbf{dx} \rightarrow \tan(\theta_1) = \mathbf{D}/2\mathbf{r}$$
 ($\mathbf{r} = \text{effective detector thickness}$)

(2) B-induced displacement

Distribution of dx = D (measured displacement)/2 as a function of B field The blue point is the displacement value from GARFIELD simulation at B=0.5T

Eríka De Lucía -- Vienna Conference or 3nstrumentation, 15-20 February 2010

(2) Spatial resolution: X-view

Eríka De Lucía -- Vienna Conference on 4nstrumentation, 15-20 February 2010

(2) Spatial resolution: Y coordinate

The Y coordinated is measured from the crossing of X and V views

CGEM z resolution

(2) Efficiency vs B field and Gain

the readout strips (less charge is collected by each single pre-amp channel) results in an efficiency drop, thus requiring for higher gain to efficiently operate the detector.

(3) Large Area GEM: Planar Prototype

70x30 cm² Triple-GEM planar Single-mask foils using latest CERN technique (*M. Villa*) for quality and uniformity test & equipped with GASTONE 64-channels final release

Off Gastone Electronic (OGE) Board

FPGA based board Xilinx VIRTEX 4FX

- Manages 1024 channels (8 Gastone Boards)
 - 10 serial-link (100Mb/s) read-out
 - zero suppression algorithm and L1 event building
- Interface
 - Gigabit Ethernet and USB for monitor and debug
 - 2Gbit/s optical link for:
 - DAQ data transmission
 - Trigger signal
 - Slow Control commands

(3) Large Area GEM: Tools & Simulation

A very large **tensioning tool** has been designed. The frame gluing will be performed by using the "vacuum bag" technique, tested in the construction of the CGEM

Finite element simulation (ANSYS) with $1 \, kg/cm$, indicates a maximum gravitational+electrostatic sag of the order of $20 \, \mu m$

(O(5 μm) electrostatic only)

[NIMA doi:10.1016/j.nima.2009.06.063]

Finalizing the project

ANSYS finite element 3-D simulation of the CGEM to estimate structural response under tensile loads: induced strain, stress and displacements

Material characterization to implement accurate description of mechanical behavior:

❖ Model validation by comparison with

Conclusions

- ❖ The **CGEM full-size prototype** has been built and tested under different conditions, **validating the new detector idea**
- The final XV readout configuration has been successfully tested in magnetic field with small planar GEMs
- ❖ We are going to build a large (70x30 cm²) planar GEM prototype to test its quality and homogeneity and GASTONE 64-channels FEE and OGE Board
- ❖ The project of the KLOE-2 Inner Tracker has been recently approved: its construction will start in 2010 to be ready for insertion in the KLOE detector by summer 2011

SPARESLIDES

- CGEM in current mode
- ❖ 10x10cm² GEM as reference (for pressure/temperature effects)
- Gain and electron transparency measurements were performed
- Uniformity measurement throughout the whole CGEM surface

6 keV X-ray gun

Ref GEM

- ❖ The standard GEM gas mixture is Ar/CO₂ =70/30
- ❖ The detector is being flushed with a Ar/ iC₄H₁₀ / CF₄ = 65 / 7 / 28 gas mixture (already characterized by LHCb GEM group)
 - CF₄ helps to match the fast electronics available at the (ASDQ)
 - Isobutane makes safer the detector operation
- Gas gain measured up to 20000
- No discharges or leakage currents observed

GEM polarization: 375/365/355 V

Drift field

GEM polarization: 375/365/355 V

Transfer fields

GEM polarization: 375/365/355 V

Induction field

(2) XV readout: Cluster size measurements

0.2

0.4

0.6

0.8

The two strips view are well equalized

The cluster size increases as magnetic field increases because of the larger spread of electrons in the gas gaps

1.2 B field (T)

Gastone Front-End Board (120 chs)

Dimensions: 62x40 mm²

- 120 strips
- GND

I/O connector

- Power supplies
- SPI slow control bus
- Readout bus

Large GEM RED: single vs double mask

Starting raw material: 50µm Kapton foil with 5µm Copper clad Photoresist deposition, **Single Mask** Hole is opened with metal and kapton etching on one side Bottom side metal etching. Top side metal is preserved with **Cathodic Protection** technique Back to kapton etching to get almost cylindrical shaped hole Further metal etching to form a small rim and eventually to reduce the copper thickness

RED large GEM: single vs double

With an **X-ray** gun, we compared, in **CURRENT MODE**, the basic performance of the new single-mask GEM with the standard double-mask.

RED large GEM: single vs double

Electron collection efficiency

80% at 0 Field: larger Optical Transparency due to larger diameter.

Difference between the two orientations of the single mask.

RED large GEM: single vs double

Extraction efficiency & Charge Sharing

Equal Sharing Field highly dependent on GEM orientation for the single mask GEMs.

RED on large GEM (GDD-CERN group + R.de Olíveíra)

double mask → double conical

$$G_{60-70} / G_{std} = 0.67$$

$$G_{70-60} / G_{std} = 0.80$$

Additional 10 ÷ 20 V needed to operate at the same Gain as Standard GEM

