Triple-GEM detectors for electron, proton and neutron beam diagnostics

G. Corradi, S. Dabagov, D. Hampai, F. Murtas, M. Pistilli, S. Puddu, D. Tagnani *INFN Laboratori Nazionali di Frascati*

P. Valente INFN Roma

M. Angelone, B. Esposito, D. Marocco, M. Pillon, S. Villari *ENEA, Frascati*

Thanks to D. Dominici (INFN LNF)

"Standard" triple GEM

The results of several tests on $10x10 \text{ cm}^2$ prototype allowed us to select the $Ar/CO_2/CF_4$ with geometry 3/1/2/1 mm

→ better time resolution 4.8 ns with respect to Ar/CO₂

→ higher efficiency at lower gas gain : 96% in 20 ns

Max space resolution O(100 μm)

Ageing studies on whole detector area 20x24 cm²: 25 kCi ⁶⁰Co source at 10 MHz/cm² on 500 cm² Integrated charge 2.2 C/cm²

Detector performance recovered with a 15 V shift on HV

G.Bencivenni et al., NIM A 518 (2004) 106
P. de Simone et al., IEEE Trans. Nucl. Sci. 52 (2005) 2872

A Standard Triple GEM construction

The detectors described in this talk are built starting form the standard **10x10cm²** produced by **CERN**: only one GEM foil has been modified to have central electrodes.

The GEM are stretched and a G10 frame is glued on top

The frame for the G3 foil has been modified for the gas inlet

Where we are working now

Key-advantages of GEM detectors:

- Gain and readout functions on separate electrodes
- Fast electron charge collected on segmented anode
- High rate capability and radiation tolerant

Electronics developments for GEM detectors

The FEE board

The card is based on *Carioca Chip and has been designed and realized in Frascati (G. Corradi). Total dimension: 3x6 cm²

16 channels for each card: channel density of 1 channel/cm²
Sensitivity of 2-3 fC; LVDS output (25 ns); Rad-hard;
Extremely modular and usable for GEM applications

All anode PCB have been designed with the same connector layout / for a total of 128 channels

Development of the CARIOCA front-end chip for the LHCb muon detector W. Bonivento, et al NIM A491:233-243,2002

The mother board

6mV/fC

Threshold calibration

Input width 20 ns input width 30 ns

780 (Jul)pjaystyj 760

> 1740 **W**

1700

1680

1660

On this mother board HV and LV ground are **connected** through a 10 K Ω resistor

CARIOCA readout electronics

HV filters

HV in

Threshold & LV inputs

4×32 LVDS outputs

HV supply for GEM detectors

HVGEM is a new device designed and realized at Frascati specifically for the HV power supply of 3GEM detectors.

G. Corradi, F. Murtas and D.Tagnani A novel High Voltage System for a triple GEM detector Nucl. Instrum. Meth. **A572** (2007) 96

All the detectors for beam diagnostic described here have been powered with this new device

Cathode (up to 5 KV)

A new version with 7 nano-ammeters one for each generator element is now in construction

Controlled via Canbus

Beam monitors for UA9 experiment at SPS (CERN)

GEM monitor on UA9 Experiment at CERN

Proton beam pipe

Channeling seen by GEMs at UA9

Decrease of beam halo scattering, due to channeling
Downstream GEM (wrt crystal) 2 KHz perfectly correlated with scintillators
Upstream GEM rate is 20Hz (consistent with background)

Luminosity monitor at Frascati collider DAFNE

LUMI GEM Assembling

Pads: 6 x 24/32 mm²

pads

induction gap

GEM 3

GEM 2

GEM 1

Cathode

Final luminometers with Carioca FEE

GEM luminometer mounted on Dafne

Electron monitor

Positron Monitor

Possible developments for a Luminometer at Super B

Background monitor

Readout every second with VME scalers

28 KHz

Only Electron Beam

48 KHz

48319

RESET

Bhabha Correlation

The system is able to measure the particle impact point with a precision of 8 mm in theta

The correlation in φ of Bhabha events is clear.

More precise analysis is in progress

Neutron Flux Monitor for fusion reactors

Neutron flux from fusion plasma

Detector divided in two zone :

 U_{DD} 700 μm Polyeth. 5 μm Al.

U_{DT} 2 mm Polyeth. 0.2 mm Al. Frascati Neutron Generator at Enea Frascati:
2.5 (DD) and 14 (DT) MeV

Key point: increase n/γ ratio

Efficiency vs GEM gain

14 MeV Neutron

2.5 MeV Neutron

There is a working region without photon contamination with eff = 10^{-4}

Flux vs time and discrimination

More studies on cathode materials are needed to improve discrimination Installed at Frascati Tokamak Upgrade: measurements in progress

Calibration and Linearity

Higher neutron flux beam are needed to measure the real performance of this monitor

Other 3 order of magnitude in neutron flux to be explored

Triple GEM detector for X-ray

A collaboration between CEA ENEA INFN has been started to develop diagnostic for burning plasma with soft X-ray. A GEM detector with a cathode mylar window has been installed in Cadarache laboratory

An image of the spot produced by the X-ray source.

DAQ based on a CAEN multipurpose VME module (FPGA) able to produce also fast control signals for feedback systems.

X-Ray spot with poly-capillary

First measurements with Poly-capillary and GEM detector

1040

Compact TPC with GEM readout for high intensity beam and ion beam

TPG for beam diagnostic

It's essentially a small TPC with a 4 cm drift and readout with triple GEM In this way also high current beam can be monitored in position

The material budget crossed by a particle is only two kapton foils ($<0.2\%X_0$) used for the field cage necessary for the drift field uniformity

14 strips with 15 resistors (10 $M\Omega$) for a total field cage current of 1 μA

Assembling the TPG chamber

(M. Pistilli)

Cosmic rays in free running

For this type of monitor a new layout has been designed for an active volume of 5x5x4 cm³
Pad dimension 3x6 mm²
Threshold set at 7 fC
Gas mixture Ar CO₂ (70-30)
Triple GEM Gain at about 10⁴
Sub-millimetric precision

A gate of 8ms is open randomly without an external trigger

Threshold set at about 7 fC
Gas mixture Ar CO₂ (70-30)
Triple GEM Gain at about 10⁴

Low intensity beam

Top view

Two electrons in 10 ns

Last event

Pad layout

High Intensity beam 4400 e

The time length of a single bunch was 10 ns

Top view

Side view

z distrib.

hits

Test for beam channeling at CERN

Medipix array

TPC chamber

GEM readout

A Single Proton through the TPC

From online monitor ... no offline analysis!

Track reconstruction

Chamber calibration

Beam position with a chamber displacement of 1 cm

mm

Proton Channeling at CERN test

Conclusions

Several portable detectors based on triple GEM technology have been built in Frascati for several purpose: Luminosity monitor, Neutron flux monitor, Xray monitors, Beam position monitors, ...

- In all of these sectors they show good performances and confirm good radiation hardness
- These R&D are spreading inside and outside INFN (ENEA, CEA, ISIS, Politecnico di Milano...).
- Particular interest inside EFDA for burning plasma diagnostics
- A new R&D for X-rays monitor and imaging for high fluxes region
 (Nuclear Fusion Reactors) in collaboration with ENEA and CEA, using
 the poly-capillary technology

A triple GEM Detector

A **GEM** (Gas Electron Multiplier, **F.Sauli**, **NIM A386 531**) is made by **50** μ**m thick kapton foil**, **copper clad** on each side and perforated by an high surface-density of **bi-conical channels**;

Several **triple GEM** chambers built in Frascati in the LHCb Muon Chamber framework*

* M.Alfonsi et al., The Triple-GEM detector for the M1R1 muon station at LHCb, N14-182, 2005 IEEE NSS Conference, Puerto Rico

"Intelligent" Mother Board

We are working on a Intelligent Mother Board with an FPGA on board able to count the 128 channel hits and/or measure the time respect to a trigger (1 ns); the data are readable through an Ethernet connection.

Design done (A.Balla, M.Gatta); Ready in few weeks

New system with 4 modules

Recently a new system with 4 modules has been made for the luminometer power supply.

This system is actually working near the Dafne IP

A detail of 4 HV connectors

HVGEM prototype stability

HV Online monitor and control

It gives the possibility to set and control directly the 4 fields and the total gain of our triple GEM chambers

Labview and PVSS programs

GEM Voltage (gain)

Fields

Gap dimension

Beam monitor at BTF Frascati

Beam profile at BTF in two configuration: narrow and wide beam

Standard diagnostic with scintillating fibers

Kapton foil with 3 lumi GEM

The construction of this type of detector has required a new GEM design (same kapton and holes structure but different electrodes shapes)

One GEM foil with the three annular structure during the stratching phase for the prototype construction

Carioca Card Sensitivity

The sensitivity is measured vs two different thresholds

Carioca Card Sensitivity

The sensitivity has been measured injecting a charge between 5 and 20 fC with different width

